• Title/Summary/Keyword: silt soil

Search Result 523, Processing Time 0.029 seconds

Mineralogy and Chemical Properties according to Particle Size Separation of Hwangto (Reddish Residual Soil) used in Feeding of Cattle (한우 사육에 이웅한 황토(풍화토)의 입도분리에 따른 광물성분 및 화학적 특성)

  • 황진연;박현진;양경희;이효민
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2002
  • Mineral composition and chemical properties of Hwangto (reddish residual soil) that used in feeding of cattles at Iksan, Jeollabuk-do, Korea were examined according to particle size separation such as gravel, sand, silt, coarse clay and fine clay. Mineral composition analyses reveal that gravel and sand are mainly composed of quartz and feldspars and that kaolin mineral and illite are dominant in clay and silt. Iron oxides are mainly included in fine clay. According to chemical analyses of major elements, Al, Fe and $H_2O$ contents are increased with decreasing of particle size. This trend well agrees with increase of clay minerals in smaller particles, Chemical analyses of trace elements indicate that contents of Zn, Rb, Sr, Ba, Pb significantly differ with particle sizes. Ba and Sr are included in feldspars since these elements are abundant in sand containing abundant feldspars. Pb and Sm are abundant in sample before particle size separation, but the contents are significantly decreased after separation. Therefore, most of these elements appear to be existed as removable phase. Nb, La, Th, Ce are more abundant in silt. The contents of all the other trace elements tend to be increased in smaller particles containing more clay minerals. The contents of changeable cations and teachable elements in acid and alkali solutions are high in clay samples. All the above results indicate that using the portion of smaller particle of Hwangto for livestock feed rather than bulk Hwangto can improve cation exchangeable capacity, ion leaching capacity and sorption properties.

Estimating Saturation-paste Electrical Conductivities of Rose-cultivated Soils from their Diluted Soil Extracts (절화장미 재배토양에서 희석된 토양 침출용액으로부터 포화반죽 전기전도도 추정)

  • Lee, In-Bog;Ro, Hee-Myong;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.398-404
    • /
    • 2000
  • We examined the effect of soil:water ratio on the equivalent concentration of individual electrolyte species and the electrical conductivities (EC) of the diluted extracts of 24 soil samples (loam or silt loam) collected from rose-cultivated plastic houses to estimate the EC of saturated soil-paste extracts (ECe) from diluted soil extracts. With increasing volume ratio of water (higher dilution), the equivalent concentrations of each electrolyte species and their sum increased. The relative contribution to the EC, however, was highest for $NO_3{^-}$, irrespective of soil:water ratio. The measured ECe was 6.36 for loam and $8.09dS\;m^{-1}$ for silt loam soils and the corresponding soil:water ratio was 0.38 and 0.50, respectively. The EC_e estimated from the EC of diluted extracts at 1:1, 1:2, or 1:5 soil:water ratios using their corresponding uniform diluted factors was lower than the measured EC_e and this difference was greater with higher dilution and EC values. Therefore, the alternative diluted factors (y) for each soil: water ratio were obtained following the definition of diluted factor and were correlated significantly with volume ratios of added water (x): y=1.55x+0.5 for loam and y=1.21x+0.48 for silt loam soils. On the other hand, correlation analyses of the EC of soil extracts (y) to the volume ratio of added water (x) on log-log scale yielded linear models: logy = -0.805logx + logb, SD of slope=0.05, b=sample specific constant, n=24). With known saturation percentage of a sample representing a group and and the EC of diluted extract of a given soil, the EC_e could be predicted using the proposed logarithmic equation.

  • PDF

Identification of two coliphages from Han-river and its adsorption-elution effect on soil materials (한강에서 분리한 이종 coliphage의 동정과 점토질에 대한 흡착 및 용출효과)

  • 홍순우;하영칠;안태석;이영숙
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.210-222
    • /
    • 1982
  • Coliphages isolated from Han-River from September 1980 to August 1981 were classified by morphological and physiological characteristics. Effects of soil metrial on the fate of coliphage in nature were investigated. 1. The correlation coefficient between coliphage and E.coli which was host of coliphages in nature was 0.7173 (p=0.004). 2. Coliphage I isolated from Han-River of which DNA molecular weight was $27{\times}10^6$ daltons was identified as $T_1$ phage and coliphage II of which DNA molecular weight $72{\times}10^6$ daltons was classified as $T_5$ phage. 3. Soil material SW was composed of 63.65% silt and 21.92% clay. Clay was consisted of illite, kaolinite and chlorite evenly. Soil material J was composed of 68.92% silt and 11.67% clay. Clay consisted of smectite only. 4. Coliphage was absorbed to soil material J more than soil material SW, and $T_1$ coliphage was absorbed to soil material more than $T_5$ coliphage was. 5. The phage adsorption efficiency to soil material was enhanced at lower pH : the phage adsorption efficiency at pH 4 was 27 time higher than at pH 7. 6. Divalent $(Ca^{2+})\;and\;trivalention\;(Al^{3+})$ enhanced the phage adsorption efficiency to soil material from 4 to 39 and from 17 to 91 times higher than monovalent $ion(Na^+)$, respectively. 7. The concentration of organic compound was inversely related to the phage adsorption efficiency to soil. 8. Adsorption of phage onto soil material, and elution efficiency of elutants was in the order of D.D.W>tap water>river water>seawater. 9. The higher the concentration of organic compound was, the more were adsorbed phages to soil eluted. 10. Coliphages survived longer in sterile soil suspension than in nonsterile soil material suspension.

  • PDF

Anlaysis on the Shear Failure of Fiber Mixed Soil (섬유혼합토의 전단파괴 해석)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.562-568
    • /
    • 1999
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground and agrictural structures. Parameters of the model are aspect ration and volumetric ocntnet of fiber, cohesion and internal friction angle of soil, adhesiion intercept of soil and fiber. It is judged that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by linear types of fiber such as steel bar, steel fiber , natural fiber etc..

  • PDF

Analysis on the Shear Failure of Fiber Mixed Soil (섬유혼합토의 전단파괴 해석)

  • 박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.86-92
    • /
    • 2000
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground. Parameters of the model are aspect ratio and volumetric content of fiber, cohesion and internal friction angle of soil, adhesion intercept and interface friction angle of soil and fiber. It is considered that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by thread types of fiber such as steel bar, steel fiber, natural fiber etc.

  • PDF

Soil Properties regarding Geological Conditions in Landslides area (산사태 발생지역에서의 지질조건별 토질특성)

  • Song, Young-Suk;Kim, Won-Young;Chae, Byung-Gon;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.884-889
    • /
    • 2005
  • A lot of landslides were occurred in Gangnung, Macheon and Geochang areas by Typhoons such as RUSA(2002) and MEAMI(2003). Soil properties of these areas are investigated regarding geological conditions in this study. The shallow plane failure were occurred in Gangnung and Geochang areas, whereas the deep circle failure were occurred in Macheon area. The matrix in Gangnung and Geochang areas was composed of Granite, and the matrix in Macheon area was composed of Gabbro. The disturbed and undisturbed soils were sampled in these areas. As the results of laboratory tests using sampled soils, the coefficient of permeability in Granite region is lower than that in Gabbro region. In the cases that the silt and clay contents are included less than 4% for the soils of Granite region and less than 7% for the soils of Gabbro region, the coefficients of permeability are rapidly increased for both soils. In addition, the simple equations for predicting the coefficients of permeability are proposed using the effective particle size and the silt and clay contents according to geological condition.

  • PDF

Breakdown Characteristics of Soils Caused by Impulse Currents (임펄스전류에 의한 토양의 절연파괴특성)

  • Lee, Bok-Hee;Lee, Kang-Soo;Kim, Hoe-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.103-109
    • /
    • 2010
  • In this paper, breakdown characteristics of soil in a coaxial cylindrical electrode system stressed by impulse currents were experimentally investigated. The breakdown voltage and current waveforms for 4 types of soils were measured, and the threshold electric field intensity, the time-lag to breakdown and the voltage-current (V-I) curves were analyzed and discussed. As a result, the breakdown voltage and current waveforms are strongly dependent on the grain size of soil, and the voltage and current waveforms for gravel and sand differ from those for silt and loess. The threshold electric field intensity Ec is increased in the order of gravel, sand, loess and silt. The V-I curves for all test samples show a 'cross-closed loop' of ${\infty}$-shape. Also, the time-lag to breakdown for gravel and sand are longer than those for silt and loess. It is expected that the results presented in this paper will provide useful information on the design of improving transient performance of a grounding electrode system subjected to lightning current considering the soil ionization.

Assessment of methane emission with application of rice straw in a paddy field

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun Il;Gwon, Hyo Suk;Lee, Jong Sik;Oh, Taek Keun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.857-868
    • /
    • 2019
  • A flooded rice field is one of the significant sources of anthropogenic methane (CH4) with the intensity of the emissions dependent on management practices. Incorporation of rice straw, which is one of the organic amendments, induces the increase of methane emissions during the flooding season. In this study, we measured of methane emission according to applications of rice straw in different soil textures during a cultivation period in 2017 and 2018. The fallow treatments were non application of rice straw (NA), spring plowing after spring spreading of rice straw (SPSA), spring plowing after previous autumn spreading of rice straw (SPAA), and autumn plowing after previous autumn spreading of rice straw (APAA). The SPSA treatment emitted the highest total methane from loam soil in both 2017 (596.7 CH4 kg ha-1) and 2018 (795.4 CH4 kg ha-1). The same trend was observed in silt clay loam soil; the SPSA treatment still emitted the highest amount of methane in both 2017 (845.9 CH4 kg ha-1) and 2018 (1,071.7 CH4 kg ha-1). The lowest emission among the rice straw incorporated plots came from the APAA treatment for both soil texture types in all the seasons. The conversion factors of the SPAA were 0.79 and 0.65 from the loam and silt clay loam soils, respectively. Relatedly, the conversion factors of the APAA were 0.71 and 0.43 from the loam and silt clay loam soils, respectively. The above observations mean therefore that incorporation of rice straw early in the fallow reduces methane emissions in the main rice growing season.

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Changes of Chemical Properties and Correlation under No-tillage Silt Loam Soil with Ridge Cultivation of Plastics Film Greenhouse Condition

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.170-179
    • /
    • 2015
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique to minimize tillage problems under rain interception green house condition including recycling of the ridge and the furrow for following cultivation in Korea. Chemical properties in soils were investigated at 3-years after cultivation at conventional tillage [CT; 2-years no-tillage (2009-2010) and 1-year (2011) tillage] and no-tillage [NT; 2009-2011] field. Soil pH maintained between 5.8 and 6.0 irrespectively tillage and no-tillage. Salinity (EC), contents of total nitrogen (TN), cation exchange capacity (CEC), and exchangeable cations (K, Ca and Mg) in soil were remarkably higher in CT than in NT treatment. Salinity (EC), contents of OM, TN, CEC, and exchangeable cations in top soil and subsoil indicated higher deviation in CT than NT treatment. Organic matters and inorganic matters in soil were positive (+) correlation. Suppression of pepper growth and increase of yield were observed in no-tillage soil compared with tillage soil. These results indicated that no-tillage technique in crop culture could play an important role with respect to chemical properties in silt loam soil.