• Title/Summary/Keyword: silicon fabrication

Search Result 1,119, Processing Time 0.025 seconds

Silicon oxide and poly-Si film simultaneously formed by excimer laser (엑시머 레이저를 이용하여 동시에 형성된 실리콘 산화막과 다결정 실리콘 박막)

  • 박철민;민병혁;전재홍;유준석;최홍석;한민구
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.35-40
    • /
    • 1997
  • A new method to form the gate oxide and recrystllize the polycrystalline silicon (poly-Si) active layer simultaneously is proposed and fabricated successfully. During te irradiation of excimer laser, the poly-Si film is recrystallized, while the oxygen ion impurities injected into the amorphous silicon(a-Si) film are activated by laser energy and react with silicon atoms to form SiO2. We investigated the characteristics of the sample fabricated by proposed method using AES, TEM, AFM. The electrical performance of oxide was verified by ramp up voltage method. Our experimental results show that a high quality oxide, a pol-Si film with fine grain, and a smooth and clean interface between oxide and poly-Si film have been successfully obtained by the proposed fabrication method. The interface roughness of oxide/poly-Si fabricated by new method is superior to film by conventional fabrication os that the proposed method may improve the performance of poly-Si TFTs.

  • PDF

Selective Removal of Mask by Mechanical Cutting for Micro-patterning of Silicon (마스크에 대한 기계적 가공을 이용한 단결정 실리콘의 미세 패턴 가공)

  • Jin, Won-Hyeog;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.60-67
    • /
    • 1999
  • Micro-fabrication techniques such as lithography and LIGA processes usually require large investment and are suitable for mass production. Therefore, there is a need for a new micro-fabrication technique that is flexible and more cost effective. In this paper a novel, economical and flexible method of producing micro-pattern on silicon wafer is presented. This method relies on selective removal of mask by mechanical cutting. Then micro-pattern is produced by chemical etching. V-shaped grooved of about 3 ${\mu}m$ wide and 2 ${\mu}m$ deep has been made on ${SiO_2}m$ coated silicon wafer with this method. This method may be utilized for making microstructures in MEMS application at low cost.

  • PDF

Formation of Magnetic Structures for Trapping of Breast Cancer Cell

  • Alaa Alasadi;Ali Ghanim Gatea Al Rubaye
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.144-151
    • /
    • 2024
  • This work focuses on the fabrication of excellent magnetic structures for trapping breast cancer cells. Micromagnetic structures were patterned for trapping cancer cells by depositing 30 nm of permalloy on a silicon substrate. These structures were designed and fabricated using two fabrication techniques: electron beam lithography and laser direct writing. Two types of magnetic structures, rectangular wire and zig-zagged wire, were created on a silicon substrate. The length of each rectangular wire and each straight line of zig-zagged wire was 150 ㎛ with a range of widths from 1 to 15 ㎛ for rectangular and 1, 5, 10 and 15 ㎛ for zigzag, respectively. The magnetic structures showed good responses to the applied magnetic field despite adding layers of silicon nitride and polyethylene glycol. The results showed that Si + Si3N4 + PEG exhibited the best adhesion of cells to the surface, followed by Si + Py + Si3N4 + PEG. concentration of 5-6 with permalloy indicates that this layer affected silicon nitride in the presence of Polyethylene glycolPEG.

Fabrication of Optically Images Using Nanostructured Photoluminescenct Porous Silicon (나노 구조를 갖는 다공성 실리콘의 광 발광성을 이용한 광학이미지 칩의 제작)

  • Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 2009
  • Optical images based on the porous silicon exhibiting photoluminescence have been prepared from an electrochemical etching of n-type silicon wafer (boron-doped,<100> orientation, resistivity $1{\sim}10{\Omega}-cm$) by using a beam projector. The images remained in the substrate displayed an optical images correlating to the optical pattern and could be useful for optical data storage. This provides the ability to fabricate complex optical encoding in the surface of silicon.

  • PDF

A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module (고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구)

  • Kim, Hyun-Uk;Kim, Jeong-Ho;Ohmori, Hitoshi;Kwak, Tae-Soo;Jeong, Shang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

Effect of Processing Parameters on Direct Fabrication of Polycrystalline Silicon Wafer (다결정 실리콘 웨이퍼 직접제조에 대한 공정변수 영향)

  • Wi, Sung-Min;Lee, Jin-Seok;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.157-161
    • /
    • 2013
  • A ribbon-type polycrystalline silicon wafer was directly fabricated from liquid silicon via a novel technique for both a fast growth rate and large grain size by exploiting gas pressure. Effects of processing parameters such as moving speed of a dummy bar and the length of the solidification zone on continuous casting of the silicon wafer were investigated. Silicon melt extruded from the growth region in the case of a solidification zone with a length of 1cm due to incomplete solidification. In case of a solidification zone wieh a length of 2 cm, on the other hand, continuous casting of the wafer was impossible due to the volume expansion of silicon derived from the liquid-solid transformation in solidification zone. Consequently, the optimal length of the solidification zone was 1.5 cm for maintaining the position of the solid-liquid interface in the solidification zone. The silicon wafer could be continuously casted when the moving speed of the dummy bar was 6 cm/min, but liquid silicon extruded from the growth region without solidification when the moving speed of the dummy bar was ${\geq}$ 9 cm/min. This was due to a shift of the position of the solid-liquid interface from the solidification zone to the moving area. The present study reports experimental findings on a new direct growth system for obtaining silicon wafers with both high quality and productivity, as a candidate for an alternate route for the fabrication of ribbon-type silicon wafers.

Fabrication and Characterization of Free-Standing Silicon Nanowires Based on Ultrasono-Method

  • Lee, Sung-Gi;Sihn, Donghee;Um, Sungyong;Cho, Bomin;Kim, Sungryong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.170-175
    • /
    • 2013
  • Silicon nanowires were detached and obtained from silicon nanowire arrays on silicon substrate using a ultrasono-method. Silicon nanowire arrays on silicon substrate were prepared with an electroless metal assisted etching of p-type silicon. The etching solution was an aqueous HF solution containing silver nitrate. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the silicon substrate were produced. After sonication of silicon nanowire array, an individual silicon nanowire was confirmed by FESEM. Optical characteristics of SiNWs were measured by FT-IR spectroscopy. The surface of SiNWs are terminated with hydrogen.

High resistivity Czochralski-grown silicon single crystals for power devices

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.137-139
    • /
    • 2008
  • Floating zone, neutron transmutation-doped and magnetic Czochralski silicon crystals are being widely used for fabrication power devices. To improve the quality of these devices and to decrease their production cost, it is necessary to use large-diameter wafers with high and uniform resistivity. Recent developments in the crystal growth technology of Czochralski silicon have enable to produce Czochralski silicon wafers with sufficient resistivity and with well-controlled, suitable concentration of oxygen. In addition, using Czoehralski silicon for substrate materials may offer economical benefits, First, Czoehralski silicon wafers might be cheaper than standard floating zone silicon wafers, Second, Czoehralski wafers are available up to diameter of 300 mm. Thus, very large area devices could be manufactured, which would entail significant saving in the costs, In this work, the conventional Czochralski silicon crystals were grown with higher oxygen concentrations using high pure polysilicon crystals. The silicon wafers were annealed by several steps in order to obtain saturated oxygen precipitation. In those wafers high resistivity over $5,000{\Omega}$ cm is kept even after thermal donor formation annealing.

Fabrication and evaluation of a silicon pendulous servo accelerometer (실리콘 펜듈럼 서보 가속도계의 제작 및 성능 평가)

  • 서재범;심규민;오문수;이관섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.56-60
    • /
    • 1996
  • This paper presents the initial results of development of a inertial navigation grade silicon pendulous accelerometer. This effort focused on developing a bulk-micromachined silicon pendulum and designing a PI-servo controller. Performance data presented in this paper includes threshold, bias short term stability and nonlinearity of scale factor. This accelerometer developed is demonstrated the feasibility of meeting one-nautical-mile-per-hour accuracy.

  • PDF

A Study on the Experimental Fabrication and Analysis of MOS Photovoltaic Solar Energy Conversion Device (MOS 광전변화소자의 식적에 관한 연구)

  • Ko, Gi-Man;Park, Sung-Hui;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.6
    • /
    • pp.203-211
    • /
    • 1984
  • MOS silicon solar cells have been developed using the fixed (interface) charge inherent to thermally oxidized silicon to induce an n-type inversion layer in 1-10 ohm-cm p-type silicon. Higher collection efficiencies are predicted than for diffused junction cells. Without special precautions a conversion efficiency of 14.2% is obtained. A MOS silicon solar cell is described in which an inversion layer forms the active area which is then contacted by means of a MOS grid. The highest efficiency is obtained when the resistivity of the substrate is high.

  • PDF