• Title/Summary/Keyword: silicon chip

검색결과 322건 처리시간 0.031초

Frequency-Dependent Line Capacitance and Conductance Calculations of On-Chip Interconnects on Silicon Substrate Using Fourier cosine Series Approach

  • Ymeri, H.;Nauwelaers, B.;Vandenberghe, S.;Maex, K.;De Roest, D.;Stucchi, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권4호
    • /
    • pp.209-215
    • /
    • 2001
  • In this paper a method for analysis and modelling of coplanar transmission interconnect lines that are placed on top of silicon-silicon oxide substrates is presented. The potential function is expressed by series expansions in terms of solutions of the Laplace equation for each homogeneous region of layered structure. The expansion coefficients of different series are related to each other and to potentials applied to the conductors via boundary conditions. In the plane of conductors, boundary conditions are satisfied at $N_d$ discrete points with $N_d$ being equal to the number of terms in the series expansions. The resulting system of inhomogeneous linear equations is solved by matrix inversion. No iterations are required. A discussion of the calculated line admittance parameters as functions of width of conductors, thickness of the layers, and frequency is given. The interconnect capacitance and conductance per unit length results are given and compared with those obtained using full wave solutions, and good agreement have been obtained in all the cases treated

  • PDF

트위스트 다이아몬드 와이어의 성능향상을 위한 특성평가에 관한 연구 (A Study on New Twist-Diamond Wire Characteristics for Improving Processing Performance)

  • 박창용;권현규;팽발;정봉교
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.26-33
    • /
    • 2016
  • In this study, a new method to develop a fixed diamond wire for silicon wafer machining by the multi-wire cutting method was developed. The new twist diamond wire has improved performance with high breaking strength and chip flutes structure. According to these characteristics, the new twist diamond wire can be used in the higher speed multi-wire cutting process with a long lifetime. Except the design of the new structure, the twist diamond wire is coating by electroless-electroplating process. It is good for reducing breakage and the falling-off of diamond grains. Based on the silicon material removal mechanism and performance of the wire-cutting machine, the optimal processing condition of the new twist diamond wire has been derived via mathematical analysis. At last, through the tensile testing and the machining experiments, the performance of the twist diamond wire has been obtained to achieve the development goals and exceed the single diamond wire.

태양전지용 실리콘 생산을 위한 금속급 실리콘 제조와 슬래그 정련 연구 (Study metal-grade silicon manufacturing and slag refining for the production of silicon solar cell)

  • 이상욱;김대석;박동호;문병문;민동준;류태우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.111.2-111.2
    • /
    • 2011
  • 야금학적 방법을 통한 태양전지용 실리콘 제조를 위하여 아크로(Arc furnace)에서 제조된 용융 상태의 금속급 실리콘을 슬래그와 직접 반응시켜 불순물을 제거하는 공정에 관한 연구를 수행하였다. 이를 위해 아크로와 고주파 유도용해로(High-frequency induction furnace)를 이용하여 금속급 실리콘을 제조와 정련 특성 실험을 수행하였다. 본 연구에서 금속급 실리콘을 제조하기 위한 장비로 150kW급-DC 아크로와 300kW급-AC 아크로를 사용하였다. 원재료로 규석, 코크스(Cokes), 숯, 그리고 우드칩(Wood chip)을 실험 비율에 맞춰 아크로 내부에 장입하고, 이를 용융환원 방법을 통해 반응을 시켰다. 이때 생산된 금속급 실리콘의 순도는 약 99.2~99.8% 이었으며, 원재료의 순도, 장입 비율 및 아크로 운전 특성에 따라 편차가 있다. 아크로에서 생산된 금속급 실리콘의 경우 인(phosphorus), 붕소(boron)를 다량 함유하고 있고, 이를 제거하기 위하여 50kW급 고주파 유도용해로 장비를 사용하여 슬래그 정련 실험을 수행하였다. 슬래그 정련시 사용한 성분은 SiO2, CaO 그리고 CaF2 이며, 금속급 실리콘과 슬래그의 질량비 및 반응 시간에 따른 실리콘 불순물 특성을 평가하였다. 실험결과 인과 붕소는 각각 1 ppm 이하, 5 ppm 이하 였으며, 칼슘을 제외한 대부분의 금속 불순물의 경우 0.1~0.2% 임을 확인하였다.

  • PDF

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.43-55
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology. Flip chip technology eliminates the need for wire bonding by redistributing the bond pads over the entire surface of the die. Instead of wires, the die is attached to the substrate utilizing a direct solder connection. Although several steps and processes are eliminated when utilizing flip chip technology, there are several new problems that must be overcome. The main issue is the mismatch in the coefficient of thermal expansion (CTE) of the silicon die and the substrate. This mismatch will cause premature solder Joint failure. This issue can be compensated for by the use of an underfill material between the die and the substrate. Underfill helps to extend the working life of the device by providing environmental protection and structural integrity. Flux residues may interfere with the flow of underfill encapsulants causing gross solder voids and premature failure of the solder connection. Furthermore, flux residues may chemically react with the underfill polymer causing a change in its mechanical and thermal properties. As flip chip packages decrease in size, cleaning becomes more challenging. While package size continues to decrease, the total number of 1/0 continue to increase. As the I/O increases, the array density of the package increases and as the array density increases, the pitch decreases. If the pitch is decreasing, the standoff is also decreasing. This paper will present the keys to successful flip chip cleaning processes. Process parameters such as time, temperature, solvency, and impingement energy required for successful cleaning will be addressed. Flip chip packages will be cleaned and subjected to JEDEC level 3 testing, followed by accelerated stress testing. The devices will then be analyzed using acoustic microscopy and the results and conclusions reported.

  • PDF

적층 방식 3차원 프린팅에 의한 미세유로 칩 제작 공정에서 프린팅 방향 및 적층 두께의 영향에 관한 연구 (Study on Effect of the printing direction and layer thickness for micro-fluidic chip fabrication via SLA 3D printing)

  • 진재호;권다인;오재환;강도현;김관오;윤재성;유영은
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.58-65
    • /
    • 2022
  • Micro-fluidic chip has been fabricated by lithography process on silicon or glass wafer, casting using PDMS, injection molding of thermoplastics or 3D printing, etc. Among these processes, 3D printing can fabricate micro-fluidic chip directly from the design without master or template for fluidic channel fabricated previously. Due to this direct printing, 3D printing provides very fast and economical method for prototyping micro-fluidic chip comparing to conventional fabrication process such as lithography, PDMS casting or injection molding. Although 3D printing is now used more extensively due to this fast and cheap process done automatically by single printing machine, there are some issues on accuracy or surface characteristics, etc. The accuracy of the shape and size of the micro-channel is limited by the resolution of the printing and printing direction or layering direction in case of SLM type of 3D printing using UV curable resin. In this study, the printing direction and thickness of each printing layer are investigated to see the effect on the size, shape and surface of the micro-channel. A set of micro-channels with different size was designed and arrayed orthogonal. Micro-fluidic chips are 3D printed in different directions to the micro-channel, orthogonal, parallel, or skewed. The shape of the cross-section of the micro-channel and the surface of the micro-channel are photographed using optical microscopy. From a series of experiments, an optimal printing direction and process conditions are investigated for 3D printing of micro-fluidic chip.

실리콘 기판 효과를 고려한 VLSI 인터컨넥트의 전송선 파라미터 추출 및 시그널 인테그러티 검증 (Transmission Line Parameter Extraction and Signal Integrity Verification of VLSI Interconnects Under Silicon Substrate Effect)

  • 유한종;어영선
    • 전자공학회논문지C
    • /
    • 제36C권3호
    • /
    • pp.26-34
    • /
    • 1999
  • 실리콘 집적회로 인터컨넥트에서 전송선 파라미터를 추출하는 새로운 방법을 제시하고 이를 실험적으로 고찰 한다. 실리콘 기판 위에 있는 전송선에서의 신호는 PCB (printed circuit board)혹은 MCM (multi-chip module)의 인터컨넥트와 같은 마이크로 스트립 구조에서 가정하는 quasi-TEM 모드가 아니라 slow wave mode (SWM)로 대부분의 에너지가 전송되기 때문에 기판의 효과를 고려하여 전송선 파라미터를 추출한다. 실리콘 기판에서 전계 및 자계의 특성을 고려하여 커패시턴스 파라미터의 계산을 실리콘 표면을 그라운드로 설정하고 계산하고 인덕턴스는 단일 전송선 모델로부터 추출한 실효 유전상수를 도입하여 계산한다. 제안한 전송선 파라미터 추출 방법의 타당성을 검증하기 위하여 테스트 패턴을 제작하여 실험적 파리미터 추출 값이 제시한 방법의 결과와 약 10% 이내에서 일치한다는 것을 보여 계산 방법의 타당성을 입증한다. 또한 고속 샘플링 오실로스코프(TDR/TDT 메터) 측정을 통하여 제시한 방법이 크로스톡 노이즈를 정확히 예측 할 수 있는 반면 흔히 사용하고 있는 기판의 효과를 고려하지 않는 RC 모델 혹은 ? 모델은 약 20∼25% 정도 과소 오차(underestimation error)를 보인다는 것을 보인다.

  • PDF

고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구 (A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module)

  • 김현욱;김정호;;곽태수;정상화
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

Step Pulse Shaping Technique for Nd:YAG Laser Using a Multi-Switching Method

  • Kwak, Su-Young;Park, Jin-Young;Kim, Su-Weon;Min, Byoung-dae;Chung, Hyun-ju;Kim, Hee-je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권2호
    • /
    • pp.55-59
    • /
    • 2004
  • Throughout manufacturing processes, pulse shaping is required for material processing and it is regarded as an important (actor according to the specific characteristics of materials. Therefore, this study suggests a highly appropriate pulse shaping technique using a multi-switching method. This is a pulse superposition method in which one flash lamp can consecutively turn on by the double switching of the discharging system. It is possible to construct a variety of pulse shapes and pulse widths by the consecutive trigger of the silicon-controlled rectifiers (SCR) of a PIC (program integrated circuit) one-chip microprocessor. The use of this technique can provide a number of advantages to people who require suitable pulse shaping for particular applications such as welding, cutting, and drilling.

A SDR/DDR 4Gb DRAM with $0.11\mu\textrm{m}$ DRAM Technology

  • Kim, Ki-Nam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.20-30
    • /
    • 2001
  • A 1.8V $650{\;}\textrm{mm}^2$ 4Gb DRAM having $0.10{\;}\mu\textrm{m}^2$ cell size has been successfully developed using 0.11 $\mu\textrm{m}$DRAM technology. Considering manufactur-ability, we have focused on developing patterning technology using KrF lithography that makes $0.11{\;}\mu\textrm{m}$ DRAM technology possible. Furthermore, we developed novel DRAM technologies, which will have strong influence on the future DRAM integration. These are novel oxide gap-filling, W-bit line with stud contact for borderless metal contact, line-type storage node self-aligned contact (SAC), mechanically stable metal-insulator-silicon (MIS) capacitor and CVD Al process for metal inter-connections. In addition, 80 nm array transistor and sub-80 nm memory cell contact are also developed for high functional yield as well as chip performance. Many issues which large sized chip often faces are solved by novel design approaches such as skew minimizing technique, gain control pre-sensing scheme and bit line calibration scheme.

  • PDF