• Title/Summary/Keyword: silicon carbide (SiC)

Search Result 563, Processing Time 0.024 seconds

A Study on the Possibility of Using Fire-Retardant Working Cloth Made from Silicon Carbide (SiC) Composite Spun Yarns (Silicon Carbide (SiC) 복합방적사로부터 제조된 원단의 방화복 활용 가능성에 관한 연구)

  • Kang, Hyun-Ju;Kang, Gun-Woong;Kwon, Oh-Hoon;Kwon, Hyeon-Myoung;Hwang, Ye-Eun;Jeon, Hye-Ji;Joo, Jong-Hyun;Park, Yong-Wan
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2021
  • The mechanical properties of a woven fabric made of SiC (silicon carbide) fibers were determined in this study using the KES-FB system. The woven fabric is used in high heat settings above 1500℃. Composite spun yarns were used to create SiC fibers. By analyzing the wearing properties, we studied the prospect of using the textiles as fire-retardant work clothes. Mechanical properties determine the wearing attributes. Therefore, the tensile linearity (LT), tensile resilience (RT), and shear stiffness (G) values of the fabric varied according to the yarn type (filament or spun yarn). The thickness, weight per square meter, and density of the fabric were found to have an effect on the shear hysteresis (2HG) and compression resilience (RC) values. In terms of wearable clothing qualities, the fabric qualities of the SiC composite yarn demonstrated the highest ratio of compressive energy to thickness (WC/T), which indicates bulkiness. The fabric manufactured from SiC composite yarns passed the KFI criteria for carbonation length and cumulative flame time in the flame-retardant test. Therefore, we discovered that the material can be used as a fire-resistant work cloth.

Effect of $\alpha$-Silicon Carbide Particle Size in Reaction Bonded Silicon Carbide ($\alpha$-SiC의 입도가 반응소결 탄화규소 소결체에 미치는 영향)

  • 한인섭;양준환;정헌생
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.583-587
    • /
    • 1989
  • Various $\alpha$-silicon carbied and colloidal graphite particles were sintered at 155$0^{\circ}C$ in vacuum atmosphere by reaction bonding sintering method, and the physical properties and microstructural analysis of specimen were investigated. With decreasing particle size, sintered density and 3-point bending strength of materials were increased and 3.2${\mu}{\textrm}{m}$ specimen showed high density and strength, 3.05g/㎤, 40kg/$\textrm{mm}^2$, respectively. The results of X-ray diffractometer and optical micrographs analysis showed that graphite and silicon melt reacted to convert to fine $\beta$-SiC particle and the body was changed to dense material.

  • PDF

A Study on Properties of SiC material Fabricated by Liquid Phase Sintering (액상소결법에 의해 제조된 탄화규소 재료의 특성에 대한 연구)

  • Sang-Pill Lee;Jae-Hwan Kwak;Jin-Kyung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1019-1024
    • /
    • 2023
  • Ceramic materials have excellent material properties such as stability at high temperatures, chemical stability, corrosion resistance, and wear resistance, so they are applicable even in extreme environments of high temperature and pressure. In particular, silicon carbide can be applied in the field of structural ceramics due to its characteristics of high strength, hardness, corrosion resistance, and heat resistance even at high temperatures. In this study, considering the application of silicon carbide materials to next-generation turbines, silicon carbide materials were manufactured using a liquid phase sintering method. When manufacturing liquid phase sintered silicon carbide, sintering additives were added to lower the sintering temperature and densify the material. In Al2O3-SiO2, it was confirmed that the secondary product of the sintering additive was observed as a slightly dark area and was evenly distributed overall, and the fracture surface of Al2O3-SiO2 was in the form of transgranular fracture in which cracks progressed along the crystal plane, and the flexural strength for Al2O3-SiO2 was about 445.6 MPa.

Technology Trend of SiC CMOS Device/Process and Integrated Circuit for Extreme High-Temperature Applications (고온 동작용 SiC CMOS 소자/공정 및 집적회로 기술동향)

  • Won, J.I.;Jung, D.Y.;Cho, D.H.;Jang, H.G.;Park, K.S.;Kim, S.G.;Park, J.M.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.1-11
    • /
    • 2018
  • Several industrial applications such as space exploration, aerospace, automotive, the downhole oil and gas industry, and geothermal power plants require specific electronic systems under extremely high temperatures. For the majority of such applications, silicon-based technologies (bulk silicon, silicon-on-insulator) are limited by their maximum operating temperature. Silicon carbide (SiC) has been recognized as one of the prime candidates for providing the desired semiconductor in extremely high-temperature applications. In addition, it has become particularly interesting owing to a Si-compatible process technology for dedicated devices and integrated circuits. This paper briefly introduces a variety of SiC-based integrated circuits for use under extremely high temperatures and covers the technology trend of SiC CMOS devices and processes including the useful implementation of SiC ICs.

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.

Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD (탄화규소 화학기상증착 공정에서 CFD를 이용한 균일도 향상 연구)

  • Seo, Jin-Won;Kim, Jun-Woo;Hahn, Yoon-Soo;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.242-245
    • /
    • 2014
  • In order to increase the thickness uniformity in chemical vapor depositon of silicon carbide, we have carried out CFD studies for a CVD apparatus having a horizontally-rotated 3-stage susceptor. We deposited silicon carbide films of 3C-SiC phase showing quite uniform thickness between stages but not uniform one in the stage. The cause of this nonuniformity is thought to be originated from the high rotational speed. And the uniformity between stages can be further increased with the $120^{\circ}$ split type nozzles from CFD results. Through the formation of silicon carbide film on graphite substrates we can make oxidation-resistant and dust-free graphite components with high hardness for the semiconductor applications.

Texture Development in Liquid-Phase-Sintered β -SiC by Seeding with β -SiC Whiskers

  • Kim, Won-Joong;Roh, Myong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.152-155
    • /
    • 2006
  • Silicon carbide ceramics seeded with 10-30 wt% SiC whiskers are fabricated by hot pressing and annealing. A quantitative texture analysis including calculation of the Orientation Distribution Function (ODF) is used for obtaining the degrees of preferred orientation of the fabricated samples. The microstructure and crystallographic texture are discussed with respect to the effect of ${\beta}-SiC$ whisker seeds on the resulting fracture toughness values. The SEM microstructures and the texture data reveal a correlation between texture and fracture toughness anisotropy.

Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane (SiC 필러 함량이 탄소 함유 Polysiloxane으로부터 제조된 고기공률 탄화규소 세라믹스의 미세조직과 꺾임강도에 미치는 영향)

  • Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.625-630
    • /
    • 2012
  • Highly porous silicon carbide (SiC) ceramics were fabricated from polysiloxane, SiC and carbon black fillers, AlN-$Y_2O_3$ additives, and poly (ether-co-octene) (PEOc) and expandable microsphere templates. Powder mixtures with a fixed PEOc content (30 wt%) and varying SiC filler contents from 0-21 wt% were compression-molded. During the pyrolysis process, the polysiloxane was converted to SiOC, the PEOc generated a considerable degree of interconnected porosity, and the expandable microspheres generated fine cells. The polysiloxane-derived SiOC and carbon black reacted and synthesized nano-sized SiC with a carbothermal reduction during a heat-treatment. Subsequent sintering of the compacts in a nitrogen atmosphere produced highly porous SiC ceramics with porosities ranging from 78 % to 82 % and a flexura lstrength of up to ~7 MPa.

Wavefront Compensation Using a Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics (적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상)

  • Ahn, Kyohoon;Rhee, Hyug-Gyo;Lee, Ho-Jae;Lee, Jun-Ho;Yang, Ho-Soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.106-113
    • /
    • 2016
  • In this paper, we deal with the wavefront compensation capability of a silicon carbide (SiC) deformable mirror (DM) with 37 actuators for adaptive optics. The wavefront compensation capability of the SiC DM is predicted by computer simulation and examined by actual experiments with a closed-loop adaptive optics system consistsing of a light source, a phase plate, a SiC DM, a high speed Shack-Hartmann sensor, and a control computer. Distortion of wavefront is caused by the phase plate in the closed-loop adaptive optics system. The distorted wavefront has a peak-to-valley (PV) wavefront error of $0.3{\mu}m{\sim}0.9{\mu}m$ and root-mean-square (RMS) error of $0.06{\mu}m{\sim}0.25{\mu}m$. The high-speed Shack-Hartmann sensor measures the wavefront error of the distortion caused by the phase plate, and the SiC DM compensates for the distorted wavefront. The compensated wavefront has residual errors lower than $0.1{\mu}m$ PV and $0.03{\mu}m$ RMS. Consequently, we conclude that we can compensate for the distorted wavefront using the SiC DM in the closed-loop adaptive optics system with an operating frequency speed of 500 Hz.

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1329-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

  • PDF