• Title/Summary/Keyword: silicate

Search Result 1,839, Processing Time 0.031 seconds

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).

Silicon Uptake Level of Six Potted Plants from a Potassium Silicate-supplemented Hydroponic Solution (규산칼륨 첨가 양액으로부터 6가지 분식물의 규소 흡수도)

  • Son, Moon Sook;Song, Ju Yeon;Lim, Mi Young;Sivanesan, Iyyakkannu;Kim, Gui Soon;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.153-158
    • /
    • 2013
  • This research was carried out to investigate silicon (Si) uptake levels by six potted plant species from a nutrient solution supplemented with $K_2SiO_3$. Uniform rooted plants of Dendranthema grandiflorum Ramat., Spathiphyllum patinii N.E. BR., Kalanchoe blossfeldiana, Hedera helix L., Dianthus caryophyllus L., and Euphorbia pulcherrima Willd. were grown in 350 mL boxes, one plant per box, containing a nutrient solution supplemented with either 0, 2.7, or 5.4 mM Si as $K_2SiO_3$. The nutrient solution in each container was adjusted to EC $1.5mS{\cdot}cm^{-1}$ and pH 5.6. The solution in each container was aerated by an 1 m-long polyethylene tube, all connected to a vacuum pump. After 15 days of cultivation in a glasshouse Si contents in the roots and shoots were measured using the colorimetric molybdate method and amount of remaining Si in the nutrient solution was measured using the ICP-AES to calculate the amount of absorption. A simple regression analysis was performed to observe the changes in Si contents in the roots and shoots as affected by concentration of Si supplied to the solution. Among the six species tested, carnation had the greatest and poinsettia the lowest tissue levels of Si concentration in the root, whereas carnation had the greatest and kalanchoe the lowest tissue levels of Si concentration in the shoot. Based on the Si content in the whole plant, Si uptake levels by poinsettia, kalanchoe, and chrysanthemum were low, whereas those by spathiphyllum were intermediate, and those of English ivy and carnation were high. These results indicated that the uptake level of Si by the plant vary depending on plant species.

Variation of Lead Content in Paddy Rice and Soil of Janghang Smelter Area (장항제련소 지역의 토양과 수도체 중 Pb 함량의 변화에 관한 연구)

  • Kim, Seong-Jo;Ryu, Taek-Kyu;Lee, Man-Sang;Yang, Chang-Hyu;Jeon, Kyung-Soo;Beak, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.185-193
    • /
    • 1992
  • To investigate differences in lead content in soils and paddy rices, affected by air pollutants from the Janghang Smelter, soil samples at the different directions, distances, and depths, surface(0-15cm depth) and subsurface(15-30cm depth) in 1982 and 1990, and rice plants at soil sampling sites in 1990 were separately collected at the Janghang Smelter area affected by combustible waste gas from the smelter chimney. Soil samples were extracted with $4M-HNO_3$ and plant samples were digested with mixture of $HNO_3$ and $HCIO_4$ for analyzing by atomic absorption spectrophotometry. The Pb contents in soils ranged from 10.3 to 644.8mg $kg^{-1}$. The average content in 1990 was higher than that in 1982. The Pb content in soils at sites nearer the center of the smelter was higher than that at sites farther from the center. The highest lead content was found at the east direction, and was low in order of east>north-north east>north east > north. The variation of Pb level in soils at east sites was more considerable than other directions. The Pb level in surface soils was higher than that in subsurface soils. The contaminated radius of Pb was until 3km all at east, north-north east and north east. A significant correlation was found between Pb content in surface soils of 1982 and that in surface soils of 1990, between Pb content in soils and contents of Cd and Zn in soils, and between Pb content in soils and soil properties as organic matter, available silicate, cation exchange capacity, exchangeable $Ca^{++}$, $Mg^{++}$ and $Na^+$. Pb content in brown rice was low in the panicle axis, and brown rice, and Pb content in stem was 3.26 times of that in brown rice. Pb content in brown rice ranged from 2.2 to 9.0 mg $kg^{-1}$.

  • PDF

Variations and Characters of Water Quality during Flood and Dry Seasons in the Eastern Coast of South Sea, Korea (한국 남해 동부 연안 해역에서 홍수기와 갈수기 동안 수질환경 특성과 변동)

  • Jeong, Do Hyeon;Shin, Hyeon Ho;Jung, Seung Won;Lim, Dhong Il
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • Physiochemical characters of sea waters during summer flood- and winter dry-seasons and their spatial variations were investigated along the coastal area off the eastern South Sea, Korea. Using the hierarchical clustering method, in this study, we present comprehensive analyses of coastal waters masses and their seasonal variations. The results revealed that the coastal water of the study area was classified into six water masses (A to F). During summer season, the surface water was mainly occupied by the coastal pseudo-estuarine water (water mass B) with low salinity and high nutrients and the river-dominated coastal water (water mass C) with low nutrients, respectively. The bottom water was dominated by cold water (water mass D) with very low temperature, high salinity and high nutrients, compared to masses of surface water. Notably, the water mass B, with high concentrations of nutrients (silicate and nitrogen) and low salinity, which is strongly controlled by the water quality of river freshwater, seems to play an important role in controlling the water quality and further regulating physical processes on ecosystem in the eastern coastal area of South Sea. The water mass D (bottom cold water) coupled with a strong thermocline, which exists in near-bottom layer along the western margin of Korea Strait, has a low temperature, pH and DO, but abundant nutrients. This water mass disappears in winter owing to strong vertical mixing, and subsequently may act as a pool for nutrients during winter dry-season. On the other hand, vertically well-mixed water column during the winter season was typically occupied by the Tsushima (water mass E) and the coastal water (water mass F) with a development of coastal front formed in a transition zone between them. These winter water masses were characterized by low nutrient concentration and balance in N/P ratio, compared with summer season with high nutrient concentrations and strong N-limitation. Accordingly, the analysis of water masses will help one to better chemical and biological processes in coastal area. In most of the study area, characteristically, the growth of phytoplankton community is limited by nitrogen, which is clearly different with coastal environment of West Sea of Korea, with a relative lack of phosphorus. It showed the western and the southern coasts in Korea are substantially different from each other in environmental and ecological characteristics.

Understanding of Phytoplankton Community Dynamics Through Algae Bioassay Experiment During Winter Season of Jinhae bay, Korea (생물검정실험을 통한 동계 진해만 식물플랑크톤의 군집 변동 특성 파악)

  • Hyun, Bong-Gil;Shin, Kyoung-Soon;Kim, Dong-Sun;Kim, Young-Ok;Joo, Hae-Mi;Baek, Seung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.27-38
    • /
    • 2011
  • The distributions of phytoplankton assemblages and environmental factors in Jinhae Bay and their relationships were investigated to estimate the potential limiting nutrient for phytoplankton growth and community structure. In situ algal bioassay experiments were also conducted to assess the species-specific characteristics in phytoplankton responses under different nutrient conditions (control, N(+) and P(+) treatment). During the study periods, bacillariophyceae and cryptophyceae occupied more than 90% of total phytoplankton assemblages. Phytoplankton standing crops in the inner part of Masan Bay were higher than that of Jinhae Bay. The DIN:DIP ratio, pH and transparency showed the significant positive correlation with phytoplankton biomass. According to cluster and multidimensiolnal scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western part of Jinhae bay where cryptophyta species were dominated. The second group was distinguished from inner stations in Masan Bay. These stations showed low transpancy and high DIN:DIP ratio. The other cluster included the stations from the eastern part and central part of Jinhae Bay, which was characterized by the high DSi:DIP ratio and dominant of diatom species. Phosphorous (P) was limited in Masan Bay due to significantly increases in the phytoplankton abundances. Based on stoichiometric limitation and algal bio-assay in Jinhae Bay, nitrogen (N) was a major limiting factor for phytoplankton production. However, silicate (Si) was not considered as limiting factor, since Si/DIN and Si/P ratio and absolute concentration of nutrient did not create any potential stoichiometric limitation in the bay. This implies that high Si availability in winter season contributes favorably to the maintenances of diatom species.

Evaluation of Available Soil Silicon Extracting Procedures for Oriental Melon (참외 시설재배 토양에 대한 유효규산 추출방법 비교)

  • Cho, Hyun-Jong;Choe, Hui-Yeol;Lee, Yong-Woo;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.251-258
    • /
    • 2004
  • Soil testing for silicon (Si) in the upland soils has not been sufficiently investigated. The objective of this study was to identify a suitable Si extraction method for upland soils of oriental melon (Cucumis melo L.). Thirty-eight surface soil samples and matured leaf samples were collected from plastic film houses in Sungju, Gyeongbuk province. In the laboratory, six different methods were used for extracting Si from the soils. The methods included 0.5 N HCl extraction, 1 N sodium acetate buffer (PH 4.0) extraction, citric acid 1% extraction, water extraction, Tiis buffer pH 7.0 extraction, and extraction after incubation with water for 1 week. The concentration of dissolved Si in soil extracts from all methods was determined colorimetrically. With 1 N sodium acetate buffer extraction, as the available soil Si increased, the concentration ofSi in oriental melon leaf increased until around $14g\;SiO_2\;kg^{-1}$ was reached in the form of a saturation curve. Also, among the methods studied, extraction with 1 N sodium acetate buffer was the only method provided a significant linear correlation with oriental melon leaf Si content in the range of extractable soil Si lower than the level which inducing Si saturation in oriental melon leaf. These results indicate that 1 N sodium acetate buffer extraction procedure is the best soil Si test method for upland soils of oriental melon. This sodium acetate buffer extraction procedure is rapid and quite well acquainted with scientists and farmers, since the method has been used for routine paddy soil testing.

Environmental Survey on the Cultivation Ground in the West Coast of Korea (서해연안의 양식장 환경조사 3. 부안 백합 양식장 환경)

  • LEE Jeong-Yeol;KIM Young-Gill
    • Journal of Aquaculture
    • /
    • v.4 no.2
    • /
    • pp.111-128
    • /
    • 1991
  • In puan area the environmental surveys were carried out at two farms of hard clam, Meretrix lusoria from April 1987 to November 1978 in order to know heather the farm environments could be rehabilitated for the cultivation of hard clam or not. The range of temperature of surface seawater was $10.7{\~}27.4^{\circ}C$, pH $7.6{\~}8.2$, salinity $22.3{\~}30.3$ ppt, COD $0.20{\~}4.71\;mg/{\ell}$, sulfide $0.04{\~}0.22\;{\mu}g-at./{\ell}$, suspended solid $34.8{\~}199.3\;mg/{\ell}$ chlorophyll a $3.71{\~}49.02\;mg/m^3$, TIN $2.01{\~}24.47\;{\mu}g-a5./{\ell}$, phosphate $0.60{\~}11.03\;{\mu}g-at./{\ell}$ and silicate $4.04{\~}476.36\;{\mu}g-at./{\ell}$. The range of temperature of substratum (bottom soil) was $14.2{\~}29.7^{\circ}C$, pH $8.3{\~}9.5$, water content of substratum was $0.28{\~}0.49\;mg/g$ dried mud, COD $2.80{\~}50.94\;mg/g$ dried mud, total organic matter $1.05{\~}1.97\%$ concentration of total Kjedhal nitrogen $31.9{\~}194.9\;{\mu}g./{\ell}$ dried mud, and sulfide $0.032{\~}0.133\;mg/g$ dried mud. Fine sand was dominant ranging over $92{\~}95\%$ and silt and clay was $2.8{\~}8.1\%$ of the composition of substratum. Some residual agricultural chemicals, ${\alpha},\;{\beta},\;{\gamma}$-BHC, heptachlor, heptachlor-epoxide, aldrin, DDE, DDT and dieldrin were detected in hard clams collected from Puan areas. Especialy, more chemical were detected during the period of rainfalls. From above results, it is considered that the hard clam frams were not yet recovered from deteriorated conditions for aquaculture.

  • PDF

Seasonal variation of physico-chemical factors and size-fractionated phytoplankton biomass at Ulsan seaport of East Sea in Korea (동해 울산항에서 이화학적 환경요인 및 크기그룹별 식물플랑크톤 생체량의 계절적 변동)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6008-6014
    • /
    • 2013
  • This study aimed to understand seasonal variation of physico-chemical factors and biomass of size-fractionated phytoplankton at Ulsan seaport during the period from February 2007 to November 2009. Water temperature, salinity, dissolved oxygen (DO), pH, chemical oxygen demand (COD) and total suspended solid (TSS) varied in the range of 8.94-$24.26^{\circ}C$, 25.06-34.54 psu, 4.30-10.73 mg/L, 7.97-8.53, 0.66-40.70 mg/L and 57.4-103.3 mg/L, respectively. These factors showed no clear spatial variation unlike spatial pattern of inorganic nutrients and total chlorophyll-a (chl-a) concentration as biomass. Concentration of phosphate, nitrate and silicate ranged from 0.01 to 3.03 ${\mu}M$, 0.05 to 21.62 ${\mu}M$, and 0.01 to 27.82 ${\mu}M$, respectively, with 2 times higher concentration at inner stations than that at outer stations during the study period. Within the range of total chl-a concentration (0.36-7.11 ${\mu}gL^{-1}$), higher concentration (avg. 1.88 ${\mu}gL^{-1}$) of total chl-a were observed at inner stations compared to that (avg. 0.90 ${\mu}gL^{-1}$) at outer stations. Micro-sized phytoplankton dominated total biomass of phytoplankton in spring (34.0-81.2%), summer (35.1-65.6%) and winter (3.9-62.0%). Nano- and pico-sized phytoplankton contributed 58.2-74.5% and 22.4-38.2% to total biomass of phytoplankton in autumn, respectively. However, contribution in biomass of size-fractionated phytoplankton to total phytoplankton biomass showed no clear difference between inner and outer stations. Consequently, these results indicated that spatio-temporal distribution of phytoplankton biomass at Ulsan seaport was dominated by micro-phytoplankton (avg. 52.3%) during the study period except autumn, which was closely dependent on the concentration of inorganic nutrients (p<0.05).

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea 1. Relationships between Water Mass and Nutrient Distribution Pattern in Autumn (동해 극전선역의 영양염류 순환과정 1. 추계 수괴와 영양염 분포와의 관계)

  • Moon Chang-Ho;YANG Han-Soeb;LEE Kwang Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.503-526
    • /
    • 1996
  • A synoptic survery of chemical characteristics in the last Sea of Korea was carried out at the 11 stations near Ullungdo in November, 1994 on board R/V Tam-Yang. On the basis of the vortical distribution patterns of temperature, salinity and dissolved oxygen, water masses in the study area are divided into five groups; 1) Tsushima Surface Water (TSW), 2) Tsushima Middle Water (TMW), 3) East Sea Intermediate Water (ESIW), 4) last Sea Proper Water (ESPW), 5) Mixed Water (MW). In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly near the thermocline. There was a slight decrease in the ESIW and the concentrations were constant with the depth below 300m except dissolved silicate which still increased with depth. Relatively high value of Si/P ratio (25.2) in ESPW, whick is the oldest water mass, suggests that Si is regenerating more slowly compared to other nutrients. The relatively high value of N/P ratio (18.6) in the surface layer might be related to high vertical eddy diffusivity $(K_z)$ of $1.19\;cm^{2}/sec$ and high nitrate upward flux of $103.7\;{\mu}g-at/m^{2}/hr$, compared to the values reported in other areas. Apparent Oxygen Utilization (AOU) was very low in the surface layer and increased in the TMW, but there was a slight decrease in the ESIW. The highest value of AOU occurred in the ESPW. The slpoe of P/AOU was 0.50. The study on the relationship between water masses and nutrient distribution patterns is important in understanding the regeneration processes of nutrients in the polar region of the last Sea.

  • PDF

Water Quality of Some Spring Waters in Pusan Area (부산시내에 산재하는 몇몇 약수터 약수의 수질)

  • KIM Yong-Gwan;CHO Hyeon-Seo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.6
    • /
    • pp.538-544
    • /
    • 1985
  • This study was carried cut to evaluate the water quality of spring waters in Pusan area(see Fig. 1). In this experiment, twenty-five water samples were collected from 5 stations from December 1983 to August 1984. Range and mean values of constituents of the samples are as follows: pH $5.80{\sim}7.25$, 6.60; water temperature $6.0{\sim}23.0^{\circ}C,\;12.9^{\circ}C$; total residue $33.0{\sim}325mg/l$, 121.2mg/l; alkalinity $4.75{\sim}51.6mg/l$, 24.1mg/l; hardness $9.47{\sim}85.0mg/l$, 30.3mg/l; electrical conductivity $0.495{\sim}2.750{\times}^2{mu}{\mho}/cm,\;1.239{\times}10^2{\mu}{\mho}/cm$;turbidity $0.54{\sim}7.80$NTU, 2.04NTU; $KMnO_4$ consumed $0.51{\sim}8.47mg/l$, 1.96mg/l; chloride ion $4.91{\sim}36.0mg/l$, 12.55mg/l; fluoride ion ND-0.30ppm, 0.08ppm; nitrate-nitrogen ND-8.94mg/l, 1.94m:g/l; nitrite-nirogen ND-0.10mg/l, 0.03mg/l; ammonia-nitrogen ND-0.16mg/l, 0.03mg/l: phosphate-phosphorus ND-0.09mg/l, 0.03mg/l; silicate-silicious $0.42{\sim}22.7ng/l$, 7.96mg/l; copper ND-10.5ppb, 2.46ppb; lead ND-22.7ppb, 3.54ppb; zinc ND-103ppb, 21.33ppb; iron $20.3{\sim}2,800ppb$, 801.72ppb, respectively. Arsenic, cyan, cadmium, manganese, mercury, chrome and phenol were not detected. Total residue, electrical conductivity, turbidity and chloride ion of station 1 (Milrakdong) were higher than others as 178.1mg/l, $2.127{\times}10^2{\mu}{\mho}/cm$, 3.16NTU and 16.32mg/l. The concentration of silicious had a great influence on precipitation. The concentration of fluoride ion of spring waters was lower as 0.08ppm than the criterion for drinking water as 1ppm, while iron was exceed 2.7 times as 801.72ppb.

  • PDF