• Title/Summary/Keyword: silicalite-1

Search Result 25, Processing Time 0.027 seconds

Synthesis of zeolite MFI films on alumina and silicon supports using seed crystals (알루미나와 실리콘 지지체에 종자결정에 의한 제올라이트 MFI 필름의 합성)

  • Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • Contiuous c-oriented zeolite MFI films $(<35{\mu}m)$ were prepared by hydrothermal secondary growth of silicalite-1 seed crystal in the surface of alumina porous substrate and silicon substrate. The supported films were characterized with scanning electron microscopy and X-ray diffraction. Effect of substrate surface roughness were investigated and a mechanism for c-oriented film formation and characteristic dom-like defects formation which is observed after seeding growth was discussed. The roughness of substrate plays an important role.

Synthesis and Characterization of Al-containing Titanium Silicalite-1 Catalysts (알루미늄 함유 티타늄 실리카라이트-1 촉매의 합성 및 특성 연구)

  • Ko, Yong Sig;Hong, Suk Bong;Kim, Geon Joong;Ahn, Wha Seung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.639-647
    • /
    • 1998
  • Al-containing titanium silicalite-1 ([Al]-TS-1) catalyst was prepared hydrothermally, and the effects of synthesis parameters such as silica/alumina sources, $SiO_2/TiO_2$ ratio, and aging treatment were investigated. The structure, crystal size, and shape were examined by XRD and SEM, and the extent of titanium incorporation into the zeolite framework was examined using UV-vis DRS spectroscopy. For [Al]-TS-1 catalyst preparation, aging of ca. 24h was essential, and the faster crystallization rates were achieved with Cab-O-Sil than with Ludox or TEOS as a silica source. In addition, the higher crystallinity and faster crystallization rate were obtained using sodium aluminate as an aluminum source. 2-butanol oxidation using $H_2O_2$ as an oxidant was carried out to confirm the redox property of the [Al]-TS-1. Acid sites catalyzed toluene alkylation study indicated that lattice titanium species in [Al]-TS-1 weakened the acid strength, and the para-ethyltoluene selectivity was enhanced as a results.

  • PDF

Preparation and characterization of MFI type Zeolite membranes on porous alumina supports (다공질 알루미나 지지체 위에 코팅한 MFI type제올라이트 분리막의 제조 및 특성 연구)

  • 정상진;김호동;김명훈;김영희;김수룡
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.110-110
    • /
    • 2003
  • 제올라이트는 다양한 유기질 분리의 촉매제 및 광학, 화학 센서, 기체 분리 등의 고기능 소재로서 크게 주목받고 있으며, 그 중 MFI type(ZSM-5, Silicalite-1) 제올라이트는 주로 석유화학공정에 주로 이용되고 있고, 분리막으로서 이산화탄소의 분리/회수 및 물/유기 혼합물의 분리 등에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 분리막 제조에 유리할 것으로 판단되어지는 적합한 크기와 형상을 갖춘 나노크기의 제올라이트 분말을 수열합성법과 마이크로웨이브 합성법을 이용하여 합성하였으며, 위의 조건으로 다공질 알루미나 지지 체 위에서 알루미나/제올라이트 분리막 제조를 하는데 성공하였다. 또 한 다양한 조건(시간, 온도, 조성)에 따른 막의 두께변화와 균열발생정도를 관찰한 결과 합성시간, 건조온도에 따라서 같은 조건의 분리막 사이에서도 현격한 차이가 나타남을 알 수 있었다. 얻어진 MFI type제올라이트 분말과 분리막은 XRD, SEM, BET, TGA, FT-IR등의 분석수단을 이용하여 물성평가를 실시하였다.

  • PDF

Properties of Zeolite Nanopowder Coated with Titanium Dioxide by Atomic Layer Deposition

  • Lee, Bo Kyung;Ok, Hae Ryul;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.149-153
    • /
    • 2016
  • Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and $H_2O$, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale $TiO_2$ films. The $TiO_2$ films were prepared at $300^{\circ}C$ by using $Ti[N(CH_3)_2]_4$ and $H_2O$ as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ${\sim}0.7{\AA}/cycle$. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between $TiO_2$-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.