• Title/Summary/Keyword: silica nanoparticles

Search Result 263, Processing Time 0.022 seconds

Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex (폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성)

  • Kim, Dong-Yeong;Seo, Jun-Hee;Lee, Byungjin;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • This study demonstrates a new method for the synthesis of organic-inorganic hybrid particles composed of an inorganic silica shell and organic core particles. The organic core particles are prepared with a uniform size using droplet-based microfluidic technology. In the process of preparing the organic core particles, uniform droplets are generated by independently controlling the flow rates of the dispersed phase containing photocurable resins and the continuous phase. After the generation of droplets in a microfluidic device, the droplets are photo-polymerized as particles by ultraviolet irradiation at the ends of microfluidic channels. The core particle is coated with a nano complex composed of polyallylamine hydrochloride (PAH) and phosphate ion (Pi) through strong non-covalent interactions such as hydrogen bonding and electrostatic interaction under optimized pH conditions. The polyamine nano complex rapidly induces the condensation reaction of silicic acid through the arranged amine groups of the main chain of PAH. Therefore, this method enabled the preparation of organic-inorganic hybrid particles coated with inorganic silica nanoparticles on the organic core. Finally, we demonstrated the synthesis of organic-inorganic hybrid particles in a short time under ambient and environmentally friendly conditions, and this is applicable to the production of organic-inorganic hybrid particles having various sizes and shapes.

Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles (금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성)

  • Kim, Ji Yeong;Kim, Eun-Kyeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

Evaluation of Toxicity and Gene Expression Changes Triggered by Oxide Nanoparticles

  • Dua, Pooja;Chaudhari, Kiran N.;Lee, Chang-Han;Chaudhari, Nitin K.;Hong, Sun-Woo;Yu, Jong-Sung;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2051-2057
    • /
    • 2011
  • Several studies have demonstrated that nanoparticles (NPs) have toxic effects on cultured cell lines, yet there are no clear data describing the overall molecular changes induced by NPs currently in use for human applications. In this study, the in vitro cytotoxicity of three oxide NPs of around 100 nm size, namely, mesoporous silica (MCM-41), iron oxide ($Fe_2O_3$-NPs), and zinc oxide (ZnO-NPs), was evaluated in the human embryonic kidney cell line HEK293. Cell viability assays demonstrated that 100 ${\mu}g/mL$ MCM-41, 100 ${\mu}g/mL$ $Fe_2O_3$, and 12.5 ${\mu}g/mL$ ZnO exhibited 20% reductions in HEK293 cell viability in 24 hrs. DNA microarray analysis was performed on cells treated with these oxide NPs and further validated by real time PCR to understand cytotoxic changes occurring at the molecular level. Microarray analysis of NP-treated cells identified a number of up- and down-regulated genes that were found to be associated with inflammation, stress, and the cell death and defense response. At both the cellular and molecular levels, the toxicity was observed in the following order: ZnO-NPs > $Fe_2O_3$-NPs > MCM-41. In conclusion, our study provides important information regarding the toxicity of these three commonly used oxide NPs, which should be useful in future biomedical applications of these nanoparticles.

Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification (화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용)

  • Han, Sang Wook;Kim, Kwang-Dae;Kim, Ju Hwan;Uhm, Sunghyun;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Polydimethylsiloxane (PDMS) can be deposited on various substrates using chemical vapor deposition process, which results in the formation of PDMS thin films with thickness below 5 nm. PDMS layers can be evenly deposited on surfaces of nanoparticles composed of various chemical compositions such as $SiO_2$, $TiO_2$, ZnO, C, Ni, and NiO, and the PDMS-coated surface becomes completely hydrophobic. These hydrophobic layers are highly resistant towards degradation under acidic and basic environments and UV-exposures. Nanoparticles coated with PDMS can be used in various environmental applications: hydrophobic silica nanoparticles can selectively interact with oil from oil/water mixture, suppressing fast diffusion of spill-oil on water and allowing more facile physical separation of spill-oil from the water. Upon heat-treatments of PDMS-coated $TiO_2$ under vacuum conditions, $TiO_2$ surface becomes completely hydrophilic, accompanying formation oxygen vacancies responsible for visible-light absorption. The post-annealed $PDMS-TiO_2$ shows enhanced photocatalytic activity with respect to the bare $TiO_2$ for decomposition of organic dyes in water under visible light illumination. We show that the simple PDMS-coating process presented here can be useful in a variety of field of environmental science and technology.

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

Electrical and Thermo-mechanical Properties of DGEBA Cycloaliphatic Diamine Nano PA and SiO2 Composites

  • Trnka, Pavel;Mentlik, Vaclav;Harvanek, Lukas;Hornak, Jaroslav;Matejka, Libor
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2425-2433
    • /
    • 2018
  • This study investigates a new organic based material and its dielectric and mechanical properties. It is a comprehensive nanocomposite comprising a combination of various types of nanofillers with hydrophobic silica nanoparticles (AEROSIL R 974) as a matrix modifier and a polyamide nano nonwoven textile, Ultramid-Polyamide 6, pulped in the electrostatic field as a dielectric barrier. The polymer matrix is an epoxy network based on diglycidyl ether of bisphenol A (DGEBA) and cycloaliphatic diamine (Laromine C260). The designed nanocomposite material is an alternative to the conventional three-component composites containing fiberglass and mica with properties that exceed current electroinsulating systems (volume resistivity on the order of $10^{16}{\Omega}{\cdot}m$, dissipation factor tan ${\delta}=4.7{\cdot}10^{-3}$, dielectric strength 39 kV/mm).

A Recent Research Trends for Food Emulsions using Pickering Stabilization of Nano-particles (나노 입자의 피커링 안정화를 이용한 식품 에멀젼의 최근 연구동향)

  • Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.238-247
    • /
    • 2012
  • Nanotechnology in the food industry is an emerging area with considerable research and potential products. Solid particles of nanoscale and microscale dimensions are becoming recognized for their potential application in the formulation of novel dispersed systems containing emulsified oil or water droplets. This review describes developments in the formation and properties of food-grade emulsion systems based on edible fat crystals, silica nanoparticles, and novel particles of biological origin nanocrystals. The special features characterizing the properties of Pickering stabilized droplets are focused in comparison with those of protein-stabilized emulsions. We also review describes application examples of these in the food industry.

Current Research Trends in Polyamide Based Nanocomposite Membranes for Desalination (해수담수화용 폴리아마이드 기반 나노복합막의 최신 연구동향)

  • Lee, Tae Hoon;Lee, Hee Dae;Park, Ho Bum
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.351-364
    • /
    • 2016
  • In recent decades, many researchers have tried to improve desalination performances of polyamide (PA) thin-film composite membranes (TFCs) by incorporating nanomaterials into a selective PA layer. This review focuses on PA-based nanocomposite membranes with high performances for energy-effective desalination in reverse osmosis. Carbon based nanomaterial (e.g., graphene oxide (GO), carbon nanotubes (CNT)) and/or other nanoparticles (e.g., zeolite, silica and etc.,) were applied to overcome the trade-off correlation between water permeability and salt rejection of current polymeric desalination membranes. Here, this brief review will discuss current studies of PA-based nanocomposite membranes with enhanced separation characteristics and provide the future research direction to achieve further improved desalination performances.

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.