• Title/Summary/Keyword: signal sensitivity

Search Result 995, Processing Time 0.029 seconds

Investigation of the Sensitivity Depletion Laws for Rhodium Self-Powered Neutrorn Detectors (SPNDs)

  • Kim, Gil-Gon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.121-131
    • /
    • 2001
  • An investigation of the sensitivity depletion laws for rhodium SPNDs was performed to reduce the uncertainty of the sensitivity depletion laws used in Combustion Engineering (CE) reactors and to develop calculational tools that provide the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools developed in this work are computer programs for a time-dependent neutron flux distribution in the rhodium emitter during depletion and for a time-dependent beta escape probability that a beta particle generated in the emitter escapes into the collector. These programs provide the sensitivity depletion laws and show the reduction of the uncertainty by about 1 % compared to that of the method employed by CE in interpreting the signal into the local neutron flux. A reduction in the uncertainty by 1 % in interpreting the signal into the local neutron flux reduces the uncertainty tv about 1 % in interpreting the signal into the local power and lengthens the lifetime of the rhodium SPND by about 10% or more.

  • PDF

Image Enhancement Using The Contrast Sensitivity Function (Contrast Sensitivity 함수를 이용한 영상화질 개선 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.238-247
    • /
    • 2015
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multibnad energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

CMOS Image Sensor with Dual-Sensitivity Photodiodes and Switching Circuitfor Wide Dynamic Range Operation

  • Lee, Jimin;Choi, Byoung-Soo;Bae, Myunghan;Kim, Sang-Hwan;Oh, Chang-Woo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.223-227
    • /
    • 2017
  • Conventional CMOS image sensors (CISs) have a trade-off relationship between dynamic range and sensitivity. In addition, their sensitivity is determined by the photodiode capacitance. In this paper, CISs that consist of dual-sensitivity photodiodes in a unit pixel are proposed for achieving wide dynamic ranges. In the proposed CIS, signal charges are generated in the dual photodiodes during integration, and these generated signal charges are accumulated in the floating-diffusion node. The signal charges generated in the high-sensitivity photodiodes are transferred to the input of the comparator through an additional source follower, and the signal voltages converted by the source follower are compared with a reference voltage in the comparator. The output voltage of the comparator determines which photodiode is selected. Therefore, the proposed CIS composed of dual-sensitivity photodiodes extends the dynamic range according to the intensity of light. A $94{\times}150$ pixel array image sensor was designed using a conventional $0.18{\mu}m$ CMOS process and its performance was simulated.

Image Enhancement Using Human Visual Perception (인간 시각의 인지 특성을 이용한 영상 화질 향상 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.206-217
    • /
    • 2018
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multiband energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

A Study on Mobile Target Estimation Resolution using Effects of Model Errors and Sensitivity Analysis

  • Lee, Kwan Hyeong
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.21-23
    • /
    • 2013
  • The antenna pattern in this case has a main beam pointed in the desired signal direction, and has a null in the direction of the interference.The conventional antenna pattern concepts of beam width, side lobes, and main beams are not used, as the antenna weights are designed to achieve a set performance criterion such as maximization of the output SNR.A new direction of arrival estimation method using effects of model errors and sensitivity analysis is proposed. Two subspaces are used to form a signal space whose phase shift between the reference signal and its effects of model error signal. Through simulation, the performance showed that the proposed method leads to increased resolution and improved accuracy of DOA estimation relative to those achieved with existing method. Since a desired signal is obtained after interference rejection through correction effects of model error, the effect of channel interference on the estimation is significantly reduced.

The Method of Measurement Signal Processing of Biosensor Based on Optical Fiber Using Reflected Localized Surface Plasmon Resonance (반사된 국소화 표면 플라즈몬 공명 신호를 이용한 광섬유기반 바이오센서의 측정 신호처리 방법)

  • Jeong, Hyeon-Ho;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • LSPR(Localized Surface Plasmon Resonance) sensor measures the refractive index change on the sensor surface. The detection of biological reaction with the unknown refractive index needs to be converted into the signal sensitivity for the refractive index change for comparison with other measurements. To find the signal sensitivity, the three steps of signal processing are proposed, which are signal modeling, signal calibration and signal normalization of LSPR sensor. The detected signal of biotin-streptavidin interaction has been converted into unit of [RU](Resonance Unit) using the proposed method. The converted signal directly can be compared with the other sensors including commercialized one.

A Study of contact Detection and Position Sensitivity of AE Sensor

  • Kwon, Haesung;Choa, Sung-Hoon
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.29-33
    • /
    • 2000
  • In this study, a methodology is developed and confirmed to find the physical contact between the slider and disc due to the defects of disk during head seeking operation using acoustic emission (AE) signal. The head/disk contact was detected during random and standard seeks, whereas no contact was detected during track fellowing. During standard and random seeks, the torsion mode of slider excitation was observed at 680KHz. Therefore, it is thought that AE technique can be used as an alternative method of the glide test by monitoring existence of the torsional mode of the slider during seek operation or can be used to detect the spacing loss during seeking operation. By appropriately choosing the location of the sensor an order of magnitude increase in the sensitivity for RMS AE signal is observed. Therefore we can find take-off velocity clearly with high signal to noise ratio of AE signal.

  • PDF

Experimental Study on Signal Sensing of a High Sensitive Fiber Optic Hydrophone (실험을 통한 소형 고감도 광섬유 하이드로폰의 감지성능 연구)

  • 김정석;윤형규;설재수
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1152-1156
    • /
    • 1999
  • In this study, a fiber optic air-backed mandrel hydrophone has been constructed and performance of acoustic signal detection has been measured. The hydrophone is based on a Mach-Zehnder interferometer with 35 m of sensing fiber. The sensitivity is measured up to -128 dB re rad/$\mu$ Pa in range from 1.4 kHz to5 kHz. A system with this design of hydrophone may be applied to detect low frequency underwater acoustic signals.

  • PDF

Heartbeat Detection based on Signal Reflected from Antenna in Mobile Device (휴대기기에서의 안테나 반사 신호를 이용한 심박 신호 검출)

  • An, Yong-Jun;Yun, Gi-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.643-649
    • /
    • 2013
  • In this paper, human heartbeat detection using signal reflected from the antenna which is varied reflection coefficient by near field variation of the antenna. For detection reflected signal from antenna, 20 dB directional coupler is used because of not affecting transmitting signal. Variance of reflection coefficient of dipole antenna is about 0.07 dB which is too small the distinction between heartbeat and noise. Sensitivity increasing method is applied and heartbeat is clearly detected. Due to phase and magnitude errors come from discrete value components, antenna is located some points in experiments ro find optimum sensitivity position. And providing verification of using communication signal, heartbeat detection when frequency modulated signal which have 4 MHz bandwidth is applied.

Basic RF Coils Used in Multi-channel RF Coil and Its B1 Field Distribution for Magnetic Resonance Imaging System (자기공명영상 촬영 장치에서 다채널 RF Coil에 이용되는 기본 구조 RF Coil의 B1 Field 분석)

  • Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4891-4895
    • /
    • 2010
  • RF coil is an important component of the Magnetic Resonance Imaging (MRI) system and the performance of RF coil is one of major factors for high SNR images. Sensitivity and RF field uniformity are parameters for evaluating RF coil performance. Since the B1 field is induced by RF coil, MR signal is strongly affected by RF coil structure and arrangement. In receiving MR signal, the RF coil sensitivity to MR Signal is also determined by the induced B1 field of RF coil. Therefore, the spatial distribution of B1 field must be verified. In this work, we performed computer simulation of the basic RF coil structures using Matlab and verified their sensitivity and uniformity through their B1 field distribution. This work will be useful for the advanced multi-channel RF coil design.