• Title/Summary/Keyword: signal processing algorithms

Search Result 519, Processing Time 0.027 seconds

Regression Algorithms Evaluation for Analysis of Crosstalk in High-Speed Digital System

  • Minhyuk Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1449-1461
    • /
    • 2024
  • As technology advances, processor speeds are increasing at a rapid pace and digital systems require a significant amount of data bandwidth. As a result, careful consideration of signal integrity is required to ensure reliable and high-speed data processing. Crosstalk has become a vital area of research in signal integrity for electronic packages, mainly because of the high level of integration. Analytic formulas were analyzed in this study to identify the features that can predict crosstalk in multi-conductor transmission lines. Through the analysis, five variables were found and obtained a dataset consisting of 302,500, data points. The study evaluated the performance of various regression models for optimization via automatic machine learning by comparing the machine learning predictions with the analytic solution. Extra tree regression consistently outperformed other algorithms, with coefficients of determination exceeding 0.9 and root mean square logarithmic errors below 0.35. The study also notes that different algorithms produced varied predictions for the two metrics.

An Efficient Signal Processing Scheme Using Signal Compression for Software GPS Receivers

  • Cho Deuk-Jae;Lim Deok-Won;Park Chan-Sik;Lee Sang-Jeong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.344-350
    • /
    • 2006
  • The software GPS receivers based on the SDR technology provide the ability to easily adapt the other signal processing algorithms without changing or modifying the hardware of the GPS receiver. However, it is difficult to implement the software GPS receivers using a commercial processor because of the heavy computational burden for processing the GPS signals in real-time. This paper proposes an efficient GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver, which uses a fundamental notion compressing the replica signals and the encoded look-up table method to generate correlation values between GPS signals and replica signals. In this paper, it is explained that the computational burden of the proposed scheme is much smaller than that of the typical GPS signal processing scheme. Finally, the processing time of the proposed scheme is compared with that of the typical scheme, and the improvement in the aspect of the computational burden is also shown.

Overview and Development of Digital SignalProcessing

  • Zhang, Chun-Xu;Shin, Yun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • Digital signal processing (DSP) is the process of taking a signal and performing an algorithm on it to analyze, modify, or better identify that signal.[1] To take advantage of DSP advances, one must have at least a basic understanding of DSP theory along with an understanding of the hardware architecture designed to support these new advances. There are several programming techniques that maximize the efficiency of the DSP hardware, as well as a few fundamental concepts used to implement DSP software. This article introduced some of these underlying functions that are the building blocks of complex signal processing functions, and It will touch on the fundamental concepts of DSP theory and algorithms and also provide an overview of the implementation and optimization of DSP software, and discuss the development of DSP.

  • PDF

Developing an integrated software solution for active-sensing SHM

  • Overly, T.G.;Jacobs, L.D.;Farinholt, K.M.;Park, G.;Farrar, C.R.;Flynn, E.B.;Todd, M.D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.457-468
    • /
    • 2009
  • A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software.

A VLSI Architecture for the Real-Time 2-D Digital Signal Processing (실시간 2차원 디지털 신호처리를 위한 VLSI 구조)

  • 권희훈
    • Information and Communications Magazine
    • /
    • v.9 no.9
    • /
    • pp.72-85
    • /
    • 1992
  • The throughput requirement for many digital signal processing is such that multiple processing units are essential for real-time implementation. Advances in VLSI technology make it feasible to design and implement computer systems consisting of a large number of function units. The research on a very high throughput VLSI architecture for digital signal processing applications requires the development of an algorithm, decomposition scheme which can minimize data communication requirements as well as minimize computational complexity. The objectives of the research are to investigate computationally efficient algorithms for solution of the class of problems which can be modeled as DLSI systems or adaptive system, and develop VLSI architectures and associated multiprocessor systems which can be used to implement these algorithms in real-time. A new VLSI architecture for real-time 2-D digital signal processing applications is proposed in this research. This VLSI architecture extends the concept of having a single processing units in a chip. Because this VLSI architecture has the advantage that the complexity and the number of computations per input does not increase as the size of the input data in increased, it can process very large 2-D date in near real-time.

  • PDF

A Study on the Extraction of Basis Functions for ECG Signal Processing (심전도 신호 처리를 위한 기저함수 추출에 관한 연구)

  • Park, Kwang-Li;Lee, Jeon;Lee, Byung-Chae;Jeong, Kee-Sam;Yoon, Hyung-Ro;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • This paper is about the extraction of basis function for ECG signal processing. In the first step, it is assumed that ECG signal consists of linearly mixed independent source signals. 12 channel ECG signals, which were sampled at 600sps, were used and the basis function, which can separate and detect source signals - QRS complex, P and T waves, - was found by applying the fast fixed point algorithm, which is one of learning algorithms in independent component analysis(ICA). The possibilities of significant point detection and classification of normal and abnormal ECG, using the basis function, were suggested. Finally, the proposed method showed that it could overcome the difficulty in separating specific frequency in ECG signal processing by wavelet transform. And, it was found that independent component analysis(ICA) could be applied to ECG signal processing for detection of significant points and classification of abnormal beats.

The Methods Of Synthesis And Matched Processing The Normal System Of Orthogonal Circle M-Invariant Signal

  • Inh Tran Due
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.897-899
    • /
    • 2004
  • There is scientific work containing the recurrence method of synthesis the new class of orthogonal circle m-invariant signals: designed effective algorithms of fast-direct computing m-convolution in time domain: engineer methods of design economic scheme of decoders for optimal receiving in aggregate of suggested signal.

  • PDF

Low Complexity Subcarrier Allocation Scheme for OFDMA Systems (OFDMA 시스템을 위한 저 복잡도 부반송파 할당기법)

  • Woo, Choong-Chae;Wang, Han-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The focus of this paper is a proposal for a computationally efficient dynamic subcarrier allocation (DSA) algorithm for orthogonal frequency-division multiple access (OFDMA) systems. The proposed DSA algorithm considerably reduces the computational complexity and the amount of channel quality information (CQI) compared to amplitude craving greedy (ACG) algorithms, which use full CQI. At the same time, the performance of the proposed algorithm closely appear to ACG algorithms. Moreover, the authors present a new bandwidth-assignment algorithm produced by modifying bandwidth assignment based on the signal-to-noise ratio (BABS). This modified BABS algorithm enables the proposed DSA algorithm to produce a strong outage performance gain over the conventional scheme.

Design and Implementation of Flaw Image processing System for Automated Ultrasonic Testing System (자동 초음파 검사를 위한 결함 영상 처리 시스템의 설계 및 구현)

  • Kim, Han-Jong;Park, Jong-Hoon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, an automated ultrasonic testing system and post signal and image processing techniques are developed in order to construct ultrasonic flaw images in weldments. Image processing algorithms are built into the flaw image processing system for the automated ultrasonic testing system. The developed signal and image analysis algorithms addressed in this study include an A-Scan data compression algorithm, ultrasonic image amplification algorithm and B-scan flaw image correction algorithm(SAFT). This flaw image processing system for the automated ultrasonic testing system can be applied to various inspection fields.

High Embedding Capacity and Robust Audio Watermarking for Secure Transmission Using Tamper Detection

  • Kaur, Arashdeep;Dutta, Malay Kishore
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.133-145
    • /
    • 2018
  • Robustness, payload, and imperceptibility of audio watermarking algorithms are contradictory design issues with high-level security of the watermark. In this study, the major issue in achieving high payload along with adequate robustness against challenging signal-processing attacks is addressed. Moreover, a security code has been strategically used for secure transmission of data, providing tamper detection at the receiver end. The high watermark payload in this work has been achieved by using the complementary features of third-level detailed coefficients of discrete wavelet transform where the human auditory system is not sensitive to alterations in the audio signal. To counter the watermark loss under challenging attacks at high payload, Daubechies wavelets that have an orthogonal property and provide smoother frequencies have been used, which can protect the data from loss under signal-processing attacks. Experimental results indicate that the proposed algorithm has demonstrated adequate robustness against signal processing attacks at 4,884.1 bps. Among the evaluators, 87% have rated the proposed algorithm to be remarkable in terms of transparency.