• Title/Summary/Keyword: signal pattern classification

Search Result 188, Processing Time 0.024 seconds

Speech/Mixed Content Signal Classification Based on GMM Using MFCC (MFCC를 이용한 GMM 기반의 음성/혼합 신호 분류)

  • Kim, Ji-Eun;Lee, In-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • In this paper, proposed to improve the performance of speech and mixed content signal classification using MFCC based on GMM probability model used for the MPEG USAC(Unified Speech and Audio Coding) standard. For effective pattern recognition, the Gaussian mixture model (GMM) probability model is used. For the optimal GMM parameter extraction, we use the expectation maximization (EM) algorithm. The proposed classification algorithm is divided into two significant parts. The first one extracts the optimal parameters for the GMM. The second distinguishes between speech and mixed content signals using MFCC feature parameters. The performance of the proposed classification algorithm shows better results compared to the conventionally implemented USAC scheme.

Parity Space and Pattern Recognition Approach for Hardware Redundant System Signal Validation using Artificial Neural Networks (인공신경망을 이용하여 하드웨어 다중 센서 신호 검증을 위한 패리티 공간 및 패턴인식 방법)

  • 윤태섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.765-771
    • /
    • 1998
  • An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.

  • PDF

Pattern Classification of the Strength of Concrete by Feature Parameters and Evidence Accumulation of Ultrasonic Signal (초음파신호의 특징 파라메터 및 증거축적 방법을 이용한 콘크리트 강도 분류)

  • Kim, Se-Dong;Sin, Dong-Hwan;Lee, Yeong-Seok;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1335-1343
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, zero-crossing(ZCR), mean frequency(MEANF), median frequency(MEDF) and autoregressive model coefficient(ARC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

Angle Difference Based State Transition Modeling Technique for the Classification of Signal Pattern from the Sensor Array (센서 어레이의 신호패턴 분류를 위한 각도 변이 기반 상태 천이 모델링 기법)

  • Kim, A-Ram;Lee, Seung-Jae;Kim, Sung-Kyung;Park, Soo-Hyun;Kim, Chang-Hwa
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.49-60
    • /
    • 2006
  • We propose a method to use a state transition model so that the sensing object can be distinguished through classification of signal patterns sensed by a sensor array. Focusing on the design of the model that is able to distinguish the sensed object more exactly, we present an idea in which the modeling elements, 'states' and 'transitions' are defined as each same-sized angle intervals into which the angle interval $(-\frac{\pi}{2},\frac{\pi}{2})$ is divided and the angle differences between adjacent signal values on sampling signal value sequence value sequence sensed from the sensor array in the uniform time interval, respectively. In addition we show the usefulness of our model through experiments.

  • PDF

Optimal R Wave Detection and Advanced PVC Classification Method through Extracting Minimal Feature in IoT Environments (IoT 환경에서 최적 R파 검출 및 최소 특징점 추출을 통한 향상된 PVC 분류방법)

  • Cho, Iksung;Woo, Dongsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting minimal feature point based on only R peak through optimal R wave. We propose an optimal R wave detection and PVC classification method through extracting minimal feature point in IoT environment. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.758% in R wave detection and the rate of 93.94% in PVC classification.

Signal Processing using Fuzzy Logic and Neural Network for Welding Gap Detection

  • Kim, Gwan-Hyung;Kim, Il;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.178-183
    • /
    • 2001
  • Welding is essential for the manufacture of a range of engineering components which may vary from very large structures such as ships and bridges to very complex structures such as aircraft engines, or miniature components for microelectronic applications. Especially, a domestic situation of the welding automation is still depend on the arc sensing system in comparison to the vision sensing system. Specially, the gap-detecting of workpiece using conventional arc sensor is proposed in this study. As a same principle, a welding current varies with the size of a welding gap. This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current, and ART2 which has the competitive learning network classifies the signal patterns the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns in each case of 1mm, 2mm, 3mm and no welding gap are identified by the artificial neural network.

  • PDF

A Study on the Welding Gap Detecting Using Pattern Classification by ART2 and Fuzzy Membership Filter

  • Kim, Tae-Yeong;Kim, Gwan-Hyung;Lee, Sang-Bae;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.527-531
    • /
    • 1998
  • This study introduce to the fuzzy membership filter to cancel a high frequency noise of welding current. And ART2 which has the competitive learning network classifiers the signal patterns for the filtered welding signal. A welding current possesses a specific pattern according to the existence or the size of a welding gap. These specific patterns result in different classification in comparison with an occasion for no welding gap. The patterns In each case of 1mm, 2mm, 3mm, and no welding gap are identified by the artificial neural network. These procedure is an off-line execution. In on-line execution, the identification model of neural network for the classified pattern is located on ahead of the welding plant. And when the welding current patterns pass through the neural network in the direction of feedforward. it is possible to recognize the existence or the size of a welding gap.

  • PDF

Classification of walking patterns using acceleration signal (가속도 신호를 이용한 걸음걸이 패턴 분류)

  • Jo, Heung-Kuk;Ye, Soo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1901-1906
    • /
    • 2010
  • This classification of walking patterns is important and many kinds of applications. Therefore, we attempted to classify walking on level ground from slow walking to fast walking using a waist acceleration signal. A tri-axial accelerometer was fixed to the subject's waist and the three acceleration signals were recorded by bluetooth module at a sampling rate of 100 Hz eleven healthy. The data were analyzed using discrete wavelet transform. Walking patterns were classified using two parameters; One was the ratio between the power of wavelet coefficients which were corresponded to locomotion and total power in the anteroposterior direction (RPA). The other was the ratio between root mean square of wavelet coefficients at the anteroposterior direction and that at the vertical direction(RAV). Slow walking could be distinguished by the smallest value in RPA from other walking pattern. Fast walking could be discriminated from level walking using RAV. It was possible to classify the walking pattern using acceleration signal in healthy people.

Pattern Analysis of Personalized ECG Signal by Q, R, S Peak Variability (Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong;Kim, Joo-Man;Kim, Seon-Jong;Kim, Byoung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.192-200
    • /
    • 2015
  • Several algorithms have been developed to classify arrhythmia which rely on specific ECG(Electrocardiogram) database. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to classify the pattern by analyzing personalized ECG signal and extracting minimal feature. Thus, QRS pattern Analysis of personalized ECG Signal by Q, R, S peak variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and extract eight feature by amplitude and phase variability. Also, we classified nine pattern in realtime through peak and morphology variability. PVC, PAC, Normal, LBBB, RBBB, Paced beat arrhythmia is evaluated by using 43 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 93.72% in QRS pattern detection classification.