• 제목/요약/키워드: signal design parameter

Search Result 252, Processing Time 0.024 seconds

Simulator for High Resolution Synthetic Aperture Radar Image Formation and Image Quality Analysis (고해상도 SAR 영상 형성 및 품질 분석을 위한 시뮬레이터)

  • Jung, Chul-Ho;Oh, Tae-Bong;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.997-1004
    • /
    • 2007
  • High resolution synthetic aperture radar image could be sensitive to the various parameters of the payload, platform, and ground system. In this paper, a parameter based SAR simulator is presented for two-dimensional image formation and image quality analysis. Functional modules are implemented by Matalb code and GUI for the flexibility and expandability. Main function of this simulator includes the SAR input signal generation, range-doppler algorithm(RDA) based SAR image formation, and the SAR image quality analysis which is relevant to the SAR system design parameters. This simulator can effectively be used for the SAR image quality performance evaluation, which can be applicable to the airborne as well as spaceborne SAR system design and analysis.

A Study on the Improvement of Spot Welding Quality of Wire Cu Alloy by Taguchi Method for Dynamic Characteristics (동특성 다구찌 기법을 통한 Cu합금 와이어의 스폿용접 품질향상 연구)

  • Suk, Ho-sam;Kim, Yeun-sung;Yoo, Choon-burn
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.1003-1020
    • /
    • 2017
  • Purpose: The purpose of this study is to find the optimum working conditions for spot welding of wire Cu alloys to achieve high-level quality. The parts subject to spot welding are brush card assemblies, which are the main module of the electric movement method of the car seat. Methods: In this study, the signal-to-noise ratio(SN ratio) and the loss function [L(y)] are used as Taguchi method for dynamic characteristics. Results: The results of the study are as follows. First, the analysis of variance using SN ratio showed 6 significant factors(p = 0.1% or less) among 7 factors except press force. Second, the optimal design of the dynamic characteristics is the tip exchange cycle: 50,000 ea., the welding time is 110 ms, the pressing force is 11 kgf/cm2, the rise time is 40 ms, and the tip dressing is 3,000 ea., Tip angle is 12o and electric current is 1,800 A. Conclusion: The validity of the spot welding process of the manufacturer's brush card assembly was verified and proved to be consistent with the study results. The results of this study are expected to standardize the welding conditions and guarantee the quality level required by the customers.

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

Comparison between Cournot-Nash and Stackelberg Game in Bi-level Program (Bi-level program에서 Cournot-Nash게임과 Stackelberg게임의 비교연구)

  • Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.99-106
    • /
    • 2004
  • This paper presents some comparisons between Cournot-Nash and Stackelberg game in bi-level program, composed of both upper level program and lower level one. The upper level can be formulated to optimize a specific objective function, while the lower formulated to express travelers' behavior patterns corresponding to the design parameter of upper level problem. This kind of hi-level program is to determine a design parameter, which leads the road network to an optimal state. Bi-level program includes traffic signal control, traffic information provision, congestion charge and new transportation mode introduction as well as road expansion. From the view point of game theory, many existing algorithms for bi-level program such as IOA (Iterative Optimization Assignment) or IEA (Iterative Estimation Assignment) belong to Cournot-Nash game. But sensitivity-based algorithms belongs to Stackelberg one because they consider the reaction of the lower level program. These two game models would be compared by using an example network and show some results that there is no superiority between the models in deterministic case, but in stochastic case Stackelberg approach is better than that of Cournot-Nash one as we expect.

Operating Conditions Proposal of Bandgap Circuit at Cryogenic Temperature for Signal Processing of Infrared Detector and a Performance Analysis of a Manufactured Chip (적외선 탐색기 신호처리를 위한 극저온 밴드갭 회로 동작 조건 제안 및 제작된 칩의 성능 분석)

  • Kim Yon Kyu;Kang Sang-Gu;Lee Hee-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.59-65
    • /
    • 2004
  • A stable reference voltage generator is necessary to the infrared image signal readout circuit(ROIC) to improve noise characteristics of signal originated from infrared devices, that is, to gain good images. In this paper, bandgap circuit operating at cryogenic temperature of 77K for Infrared image ROIC(readout integrated circuit) was first made. It demonstrates practical use possibility through taking measurements and estimations. Bandgap circuit is a representative voltage reference circuit. Most of bandgap reference circuits which are presented so far operate at room temperature, and their characteristic are not suitable for infrared image ROIC operating at liquid nitrogen temperature, 77K. To design bandgap circuit operating at cryogenic temperature, suitable circuit is selected and the parameter characteristics of used devices as temperature change are seen by a theoretical study and fitted at liquid temperature with considering such characteristics. This circuit has been fabricated in the Hynix 0.6um standard CMOS process, and the output voltage measured shows that the stability is 1.042±0.0015V over the temperature range of 60K to 110K and is better than bandgap circuits operated at room temperature.

Advanced Design of Birdcage RF Coil for Various Absorption Regions at 3T MRI System

  • Lee, Jung-Woo;Choe, Bo-Young;Choi, Chi-Bong;Huh, Soon-Nyoung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.1
    • /
    • pp.48-60
    • /
    • 2005
  • Purpose: The purpose of this study was to design and build an optimized birdcage resonator configuration with a low pass filter, which would facilitate the acquisition of high-resolution 3D-image of small animals at 3T MRI system. Methods and Materials: The birdcage resonator with 12-element structures was built, in order to ensure B1 homogeneity over the image volume and maximum filling factor, and hence to maximize the signal to noise ratio (SNR) and resolution of the 3-dimensional images. The diameter and length of each element of a birdcage resonator were as follows: (1) diameter 13 cm, length 22 cm, (2) diameter 15 cm, length 22 cm, (3) diameter 17 cm, length 25 cm. Spin echo pulse sequence and fast spin echo pulse sequence were employed in obtaining MR images. The quality of the manufactured birdcage resonators wes evaluated on the basis of the return loss following matching and tuning process. Results: The experimental MR image of phantoms by the various manufactured birdcage resonators were obtained to compare the SNR in accordance with the size of objects. The size of an object to that of coil was identified by parameters that were estimated from the image of a phantom. First, the diameter of the birdcage resonator was 15cm, and the ratio of the tangerine to the birdcage resonator accounted for approximately 27%. The Q factor was 53.2 and the SNR was 150.7. Second, at the same birdcage resonator, the ratio of the orange was approximately 53%. The SNR and the Q parameter was 212.8 and 91.2, respectively. Conclusion: The present study demonstrated that if birdcage resonators have the same forms, SNR could be different depending on the size of an object, especially when the size of an object to that of coil is approximately 40~80%, the former is bigger than the latter. Therefore, when the size of an object to be observed is smaller than that of coil, the coil should be manufactured in accordance with the size of an object in order to obtain much more excellent images.

  • PDF

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS (독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발)

  • Dr. Tae-Jun Ha
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF

A Study on Monitoring of Liver Function Based on Voice Signal Analysis for u-Health System (u-Health 시스템을 위한 음성신호 분석 기반의 간 기능 모니터링에 관한 연구)

  • Kim, Bong-Hyun;Cho, Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.389-396
    • /
    • 2011
  • There is getting worse to various liver diseases due to change in eating habits, stress, alcohol etc in modern society. Therefore, we proposed methodology to diagnose early for liver disease to study the influence on voice in liver diseases. To this end, we carried out experiment to apply parameter of voice analysis to collect each voice inpatients and patients by treatment of liver diseases patients. Particularly, we carried out experiment to apply element value of pronunciation and the third formant frequency bandwidths about velar sounds associated liver in oriental medicine, then to produce objective index resonance cavity and influence vocalization in liver diseases. In addition, we carried out to study about design of system to monitoring a liver function in u-Health environment based on result by experiment.

The Design of the Ternary Sequential Logic Circuit Using Ternary Logic Gates (3치 논리 게이트를 이용한 3치 순차 논리 회로 설계)

  • 윤병희;최영희;이철우;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.52-62
    • /
    • 2003
  • This paper discusses ternary logic gate, ternary D flip-flop, and ternary four-digit parallel input/output register. The ternary logic gates consist of n-channel pass transistors and neuron MOS(νMOS) threshold inverters on voltage mode. They are designed with a transmission function using threshold inverter that are in turn, designed using Down Literal Circuit(DLC) that has various threshold voltages. The νMOS pass transistor is very suitable gate to the multiple-valued logic(MVL) and has the input signal of the multi-level νMOS threshold inverter. The ternary D flip-flop uses the storage element of the ternary data. The ternary four-digit parallel input/output register consists of four ternary D flip-flops which can temporarily store four-digit ternary data. In this paper, these circuits use 3.3V low power supply voltage and 0.35m process parameter, and also represent HSPICE simulation result.