• Title/Summary/Keyword: signal decomposition

Search Result 394, Processing Time 0.023 seconds

Feedwater Flow-rate Evaluation of Nuclear Power Plants Using Wavelet Analysis and Artificial Neural Networks (웨이블릿 해석과 인공 신경회로망을 이용한 원자력발전소의 급수유량 평가)

  • Yu, Sung-Sik;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.47-53
    • /
    • 2002
  • The steam generator feedwater flow-rate in a nuclear power plant was estimated by means of artificial neural networks with the wavelet analysis for enhanced information extraction. The fouling of venturi meters, used for steam generator feedwater flow-rate in pressurized water reactors, may result in unnecessary plant power derating. The back-propagation network was used to generate models of signals for a pressurized water reactor Multiple-input, single-output hetero-associative networks were used for evaluating the feedwater flow rate as a function of a set of related variables. The wavelet was used as a low pass filter eliminating the noise from the raw signals. The results have shown that possible fouling of venturi can be detected by neural networks, and the feedwater flow-rate can be predicted as an alternative to existing methods. The research has also indicated that the decomposition of signals by wavelet transform is a powerful approach to signal analysis for denoising.

Monitoring observation of PG0934+013 using The Southern African Large Telescope

  • Park, Dawoo;Woo, Jong-Hak;Romero-Colmenero, Encarni;Crawford, Steven M.;Barth, Aaron J.;Pei, Liuyi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.54-54
    • /
    • 2013
  • We performed spectroscopic and photometric monitoring observations of a QSO, PG0934+013 for a reverberation-mapping analysis, using the 9-m Southern African Large Telescope (SALT) for spectroscopy and the 2-m Faulkes Telescope North and the South for photometry. The monitoring campaign was carried out for 5 month between December 2012 to April 2013, providing 20 spectroscopic epochs and ~40 photometric epochs. Based on the obtained spectra, which typically have a signal-to-noise ratio to 30-60, we performed multicomponent decomposition using various components, i.e., power-law continuum, FeII emission complex, and broad and narrow emission lines, to properly measure the Hbeta line flux. After a flux normalization using [O III] 5007 line luminosity, we obtained a rms spectrum from all epochs, which shows clear variability of Hbeta line. We find that Hbeta line flux decreases by ~20% during the monitoring period while the continuum flux obtained from the aperture photometry based on the imaging data, shows similar variability. The current Hbeta light curve shows monotonic decrease and a reliable cross correlation analysis between Hbeta and continuum light is difficult. Nevertheless, we obtained a preliminary lag measurements as ~24 light days.

  • PDF

Monitoring of wind turbine blades for flutter instability

  • Chen, Bei;Hua, Xu G.;Zhang, Zi L.;Basu, Biswajit;Nielsen, Soren R.K.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.115-131
    • /
    • 2017
  • Classical flutter of wind turbine blades indicates a type of aeroelastic instability with fully attached boundary layer where a torsional blade mode couples to a flapwise bending mode, resulting in a mutual rapid growth of the amplitudes. In this paper the monitoring problem of onset of flutter is investigated from a detection point of view. The criterion is stated in terms of the exceeding of a defined envelope process of a specific maximum torsional vibration threshold. At a certain instant of time, a limited part of the previously measured torsional vibration signal at the tip of blade is decomposed through the Empirical Mode Decomposition (EMD) method, and the 1st Intrinsic Mode Function (IMF) is assumed to represent the response in the flutter mode. Next, an envelope time series of the indicated modal response is obtained in terms of a Hilbert transform. Finally, a flutter onset criterion is proposed, based on the indicated envelope process. The proposed online flutter monitoring method provided a practical and direct way to detect onset of flutter during operation. The algorithm has been illustrated by a 907-DOFs aeroelastic model for wind turbines, where the tower and the drive train is modelled by 7 DOFs, and each blade by means of 50 3-D Bernoulli-Euler beam elements.

A study on optimal Image Data Multiresolution Representation and Compression Through Wavelet Transform (Wavelet 변환을 이용한 최적 영상 데이터 다해상도 표현 및 압축에 관한 연구)

  • Kang, Gyung-Mo;Jeoung, Ki-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.31-38
    • /
    • 1994
  • This paper proposed signal decomposition and multiresolution representation through wavelet transform using wavelet orthonormal basis. And it suggested most appropriate filter for scaling function in multiresoltion representation and compared two compression method, arithmetic coding and Huffman coding. Results are as follows 1. Daub18 coefficient is most appropriate in computing time, energy compaction, image quality. 2. In case of image browsing that should be small in size and good for recognition, it is reasonable to decompose to 3 scale using pyramidal algorithm. 3. For the case of progressive transmittion where requires most grateful image reconstruction from least number of sampls or reconstruction at any target rate, I embedded the data in order of significance after scaling to 5 step. 4. Medical images such as information loss is fatal have to be compressed by lossless method. As a result from compressing 5 scaled data through arithmetic coding and Huffman coding, I obtained that arithmetic coding is better than huffman coding in processing time and compression ratio. And in case of arithmetic coding I could compress to 38% to original image data.

  • PDF

SOC Verification Based on WGL

  • Du, Zhen-Jun;Li, Min
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1607-1616
    • /
    • 2006
  • The growing market of multimedia and digital signal processing requires significant data-path portions of SoCs. However, the common models for verification are not suitable for SoCs. A novel model--WGL (Weighted Generalized List) is proposed, which is based on the general-list decomposition of polynomials, with three different weights and manipulation rules introduced to effect node sharing and the canonicity. Timing parameters and operations on them are also considered. Examples show the word-level WGL is the only model to linearly represent the common word-level functions and the bit-level WGL is especially suitable for arithmetic intensive circuits. The model is proved to be a uniform and efficient model for both bit-level and word-level functions. Then Based on the WGL model, a backward-construction logic-verification approach is presented, which reduces time and space complexity for multipliers to polynomial complexity(time complexity is less than $O(n^{3.6})$ and space complexity is less than $O(n^{1.5})$) without hierarchical partitioning. Finally, a construction methodology of word-level polynomials is also presented in order to implement complex high-level verification, which combines order computation and coefficient solving, and adopts an efficient backward approach. The construction complexity is much less than the existing ones, e.g. the construction time for multipliers grows at the power of less than 1.6 in the size of the input word without increasing the maximal space required. The WGL model and the verification methods based on WGL show their theoretical and applicable significance in SoC design.

  • PDF

Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum

  • Leaman, Felix;Herz, Aljoscha;Brinnel, Victoria;Baltes, Ralph;Clausen, Elisabeth
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2020
  • One of the most important aspects in structural health monitoring is the detection of fatigue damage. Structural components such as heavy-duty bolts work under high dynamic loads, and thus are prone to accumulate fatigue damage and cracks may originate. Those heavy-duty bolts are used, for example, in wind power generation and mining equipment. Therefore, the investigation of new and more effective monitoring technologies attracts a great interest. In this study the acoustic emission (AE) technology was employed to detect incipient damage during fatigue testing of a M36 bolt. Initial results showed that the AE signals have a high level of background noise due to how the load is applied by the fatigue testing machine. Thus, an advanced signal processing method in the time-frequency domain, the Hilbert-Huang Spectrum (HHS), was applied to reveal AE components buried in background noise in form of high-frequency peaks that can be associated with damage progression. Accordingly, the main contribution of the present study is providing insights regarding the detection of incipient damage during fatigue testing using AE signals and providing recommendations for further research.

A Study for the Analysis of EEG Variation based on Time-Frequency Mapping (Time-Frequency Mapping에 의한 뇌파의 변화량 분석에 관한 연구)

  • Kim, J.H.;Whang, M.C.;Im, J.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.370-373
    • /
    • 1997
  • We are exposed to the various external stimuli input from the environment, which cause emotional changes based on the characteristics of the stimuli. Unfortunately there are no quantitative results on relationship between human sensibility and the characteristics of physiological signals. The objective of this study was to quantify EEG signals evoked by auditory stimulation based on the assumption that the analysis of the variability on the characteristics of the EEG waveform may provide the significant information regarding changes in psychological states of the subject. The experiment was devised with seven experimental conditions, which are control and six different types of auditory stimulation. Six subjects were used to obtain EEGs while introducing auditory stimulation. Wavelet transformation was employed to analyze the EEG signals. The results showed that the reconstructed signals at the decomposition level revealed the different energy value on the EEG signal. Also, general patterns of EEG signals in rest state compare with negative and positive stimulus were found. This study could be extended to establish an algorithm which distinguishes psychophysiological states of the subjects exposed to the auditory stimulation.

  • PDF

Wind loads on fixed-roof cylindrical tanks with very low aspect ratio

  • Lin, Yin;Zhao, Yang
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.651-668
    • /
    • 2014
  • Wind tunnel tests are conducted to investigate the wind loads on vertical fixed-roof cylindrical tanks with a very low aspect ratio of 0.275, which is a typical ratio for practical tanks with a volume of $100,000m^3$. Both the flat-roof tank and the dome-roof tank are investigated in present study. The first four moments of the measured wind pressure, including the mean and normalized deviation pressure, kurtosis and skewness of the pressure signal, are obtained to study the feature of the wind loads. It is shown that the wind loads are closely related to the behavior of flow around the structure. For either tank, the mean wind pressures on the cylinder are positive on the windward area and negative on the sides and the wake area, and the mean wind pressures on the whole roof are negative. The roof configurations have no considerable influence on the mean pressure distributions of cylindrical wall in general. Highly non-Gaussian feature is found in either tank. Conditional sampling technique, envelope method, and the proper orthogonal decomposition (POD) analysis are employed to investigate the characteristics of wind loads on the cylinder in more detail. It is shown that the patterns of wind pressure obtained from conditional sampling are similar to the mean pressure patterns.An instantaneous pressure coefficient can present a wide range from the maximum value to the minimum value. The quasi-steady assumption is not valid for structures considered in this paper according to the POD analysis.

PhysioCover: Recovering the Missing Values in Physiological Data of Intensive Care Units

  • Kim, Sun-Hee;Yang, Hyung-Jeong;Kim, Soo-Hyung;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.10 no.2
    • /
    • pp.47-58
    • /
    • 2014
  • Physiological signals provide important clues in the diagnosis and prediction of disease. Analyzing these signals is important in health and medicine. In particular, data preprocessing for physiological signal analysis is a vital issue because missing values, noise, and outliers may degrade the analysis performance. In this paper, we propose PhysioCover, a system that can recover missing values of physiological signals that were monitored in real time. PhysioCover integrates a gradual method and EM-based Principle Component Analysis (PCA). This approach can (1) more readily recover long- and short-term missing data than existing methods, such as traditional EM-based PCA, linear interpolation, 5-average and Missing Value Singular Value Decomposition (MSVD), (2) more effectively detect hidden variables than PCA and Independent component analysis (ICA), and (3) offer fast computation time through real-time processing. Experimental results with the physiological data of an intensive care unit show that the proposed method assigns more accurate missing values than previous methods.

Transverse Wave Propagation in [ab0] Direction of Silicon Single Crystal

  • Yun, Sangjin;Kim, Hye-Jeong;Kwon, Seho;Kim, Young H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.381-388
    • /
    • 2015
  • The speed and oscillation directions of elastic waves propagating in the [ab0] direction of a silicon single crystal were obtained by solving Christoffel's equation. It was found that the quasi waves propagate in the off-principal axis, and hence, the directions of the phase and group velocities are not the same. The maximum deviation of the two directions was $7.2^{\circ}$. Two modes of the pure transverse waves propagate in the [110] direction with different speeds, and hence, two peaks were observed in the pulse echo signal. The amplitude ratio of the two peaks was dependent on the initial oscillating direction of the incident wave. The pure and quasi-transverse waves propagate in the [210] direction, and the oscillation directions of these waves are perpendicular to each other. The skewing angle of the quasi wave was calculated as $7.14^{\circ}$, and it was measured as $9.76^{\circ}$. The amplitude decomposition in the [210] direction was similar to that in the [110] direction, since the oscillation directions of these waves are perpendicular to each other. These results offer useful information in measuring the crystal orientation of the silicon single crystal.