• 제목/요약/키워드: signal database

검색결과 500건 처리시간 0.025초

데이터베이스 기반 GPS 위치 보정 시스템 (Database based Global Positioning System Correction)

  • 문준호;최혁두;박남훈;김종희;박용운;김은태
    • 로봇학회논문지
    • /
    • 제7권3호
    • /
    • pp.205-215
    • /
    • 2012
  • A GPS sensor is widely used in many areas such as navigation, or air traffic control. Particularly, the car navigation system is equipped with GPS sensor for locational information. However, when a car goes through a tunnel, forest, or built-up area, GPS receiver cannot get the enough number of satellite signals. In these situations, a GPS receiver does not reliably work. A GPS error can be formulated by sum of bias error and sensor noise. The bias error is generated by the geometric arrangement of satellites and sensor noise error is generated by the corrupted signal noise of receiver. To enhance GPS sensor accuracy, these two kinds of errors have to be removed. In this research, we make the road database which includes Road Database File (RDF). RDF includes road information such as road connection, road condition, coordinates of roads, lanes, and stop lines. Among the information, we use the stop line coordinates as a feature point to correct the GPS bias error. If the relative distance and angle of a stop line from a car are detected and the detected stop line can be associated with one of the stop lines in the database, we can measure the bias error and correct the car's location. To remove the other GPS error, sensor noise, the Kalman filter algorithm is used. Additionally, using the RDF, we can get the information of the road where the car belongs. It can be used to help the GPS correction algorithm or to give useful information to users.

Indoor 3D Dynamic Reconstruction Fingerprint Matching Algorithm in 5G Ultra-Dense Network

  • Zhang, Yuexia;Jin, Jiacheng;Liu, Chong;Jia, Pengfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.343-364
    • /
    • 2021
  • In the 5G era, the communication networks tend to be ultra-densified, which will improve the accuracy of indoor positioning and further improve the quality of positioning service. In this study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to construct a local fingerprint matrix having low-rank characteristics using partial fingerprint data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching strategy is used to screen out the best quality service base stations and multiple sub-optimal service base stations. Then, the fingerprints of the other base station numbers are eliminated from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated coordinates of the point to be located are obtained through the K-nearest neighbor matching algorithm. The analysis of the simulation results demonstrates that the average relative error between the reconstructed fingerprint database by the DSR-FP algorithm and the original fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint database is high, and the influence of the location error can be ignored. The positioning error of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint matching algorithm, while its positioning accuracy is higher.

Geohashed Spatial Index Method for a Location-Aware WBAN Data Monitoring System Based on NoSQL

  • Li, Yan;Kim, Dongho;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • 제12권2호
    • /
    • pp.263-274
    • /
    • 2016
  • The exceptional development of electronic device technology, the miniaturization of mobile devices, and the development of telecommunication technology has made it possible to monitor human biometric data anywhere and anytime by using different types of wearable or embedded sensors. In daily life, mobile devices can collect wireless body area network (WBAN) data, and the co-collected location data is also important for disease analysis. In order to efficiently analyze WBAN data, including location information and support medical analysis services, we propose a geohash-based spatial index method for a location-aware WBAN data monitoring system on the NoSQL database system, which uses an R-tree-based global tree to organize the real-time location data of a patient and a B-tree-based local tree to manage historical data. This type of spatial index method is a support cloud-based location-aware WBAN data monitoring system. In order to evaluate the proposed method, we built a system that can support a JavaScript Object Notation (JSON) and Binary JSON (BSON) document data on mobile gateway devices. The proposed spatial index method can efficiently process location-based queries for medical signal monitoring. In order to evaluate our index method, we simulated a small system on MongoDB with our proposed index method, which is a document-based NoSQL database system, and evaluated its performance.

Coordinated Millimeter Wave Beam Selection Using Fingerprint for Cellular-Connected Unmanned Aerial Vehicle

  • Moon, Sangmi;Kim, Hyeonsung;You, Young-Hwan;Kim, Cheol Hong;Hwang, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1929-1943
    • /
    • 2021
  • Millimeter wave (mmWave) communication based on the wide bandwidth of >28 GHz is one of the key technologies for cellular-connected unmanned aerial vehicles (UAVs). The selection of mmWave beams in such cellular-connected UAVs is challenging and critical, especially when downlink transmissions toward aerial user equipment (UE) suffer from poor signal-to-interference-plus-noise ratio (SINR) more often than their terrestrial counterparts. This study proposed a coordinated mmWave beam selection scheme using fingerprint for cellular-connected UAV. The scheme comprises fingerprint database configuration and coordinated beam selection. In the fingerprint database configuration, the best beam index from the serving cell and interference beam indexes from neighboring cells are stored. In the coordinated beam selection, the best and interference beams are determined using the fingerprint database information instead of performing an exhaustive search, and the coordinated beam transmission improves the SINR for aerial UEs. System-level simulations assess the UAV effect based on the third-generation partnership project-new radio mmWave and UAV channel models. Simulation results show that the proposed scheme can reduce the overhead of exhaustive search and improve the SINR and spectral efficiency.

Design for AEBS Test Scenario Applying Domestic Traffic Accidents

  • Choi, Yong-Soon;Lim, Jong-Han
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.1-7
    • /
    • 2020
  • This study is a study on the development of AEBS test scenarios for traffic accidents in Korea, and was compared and analyzed using the Traffic Accident Analysis Program. To ensure the safety of passengers and pedestrians in traffic accidents, the number of cars equipped with ADAS is increasing rapidly at all car manufacturers in each country. For traffic accidents used in this study, the domestic traffic accident database (ACCC) produced by SAMSONG was used. Domestic traffic accidents differ from overseas traffic accidents in terms of road type, signal system, driver's seat location and number of vehicles. ACCC databases, which supplemented and reinforced these differences, built a database based on the PC-CRASH program. In the study, we analyze the types of accidents to develop comparative scenarios for each type of road and collision type of traffic accidents. When the road types of traffic accidents in Korea were divided into five types and the collision types were divided into six, it was confirmed that the most types of FRONT-SIDE crashes appeared at the intersection. It is expected that the frequency of possible traffic accidents and collision types can be predicted according to the road type in the accident database, we that it can be used as an AEBS test scenario development suitable for the domestic road environment.

2차원 바코드를 위한 데이터 부호화 알고리즘 설계 (Design of Data Encoding Algorithm for a Two Dimensional Bar Code)

  • 전성구;김일환
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.171-174
    • /
    • 2005
  • In this paper, we propose a new data encoding algorithm for a two-dimensional bar code system. In general, the one-dimensional bar code is just a key which can access detailed information to the host computer database. But the two-dimensional bar code is a new technology which can obtain high density information without access to the host computer database. We implemented the encoding algorithm for Data Matrix bar code which is the most widely used among the many kinds of two-dimensional bar codes in the field of marking using Digital Signal Processor (TMS320C31). The performance of the proposed algorithm is verified by comparing the imprinted symbols on the steel surfaces with the codes which are decoded by a bar code reader.

  • PDF

웨이브렛 변환을 이용한 심전도의 기저선 제거 (A Baseline Elimination Method for ECG using Wavelet Transform)

  • 최형민;김원식;정광일;황재호
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2003년도 춘계학술대회 논문집
    • /
    • pp.128-133
    • /
    • 2003
  • 본 연구에서는 심전도 신호의 전처리 과정에서 원신호의 왜곡을 최소화하여 기저선을 제거 할 수 있는 웨이브렛 모함수를 결정하기 위하여, European S-T T database의 심전도 신호에 다양한 웨이브렛 모함수를 적용하여 기저선을 제거하였으며 제거효율을 평가하기 위하여 SNR과 RSE를 계산하였다. 실험결과 가장 우수했던 웨이브렛 모함수는 db8(diff: 27.12), coif5(diff: 25.32), sym7(diff: 25.13)이었으며, diff(meanSNR-meanRSE)의 값이 23미만으로는 심전도의 진단 파라미터까지 왜곡시키므로 사용할 수 없다는 것을 알 수 있었다.

  • PDF

2차원 바코드를 위한 데이터 부호화 알고리즘 설계 (Design of Data Encoding Algorithm for the Two Dimensional Barcode)

  • 전성구;허남억;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.173-175
    • /
    • 2005
  • In this paper, we propose a data encoding algorithm for two-dimensional barcode system. In general, one-dimensional barcode is just a key which can access detailed information to the host computer database. But the two-dimensional barcode is a new technology which can obtain high density information without access to the host computer database. We implemented encoding algorithm for Data Matrix Barcode which is the most widely used among the many kind of two-dimensional barcodes. And we marked to a real object using Digital Signal Processor(DSP) Marking System. The performance of proposed algorithm is verified through the result of marking work.

  • PDF

프레임 기반의 수중 천이신호 식별을 위한 기준패턴의 데이터베이스 구성 방법에 관한 연구 (A Study on the Reference Template Database Design Method for Frame-based Classification of Underwater Transient Signals)

  • 임태균;류종엽;김태환;배건성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.885-886
    • /
    • 2008
  • This paper presents a reference template design method for frame-based classification of underwater transient signals. In the proposed method, framebased feature vectors of each reference signal are clustered by using LBG clustering algorithm to reduce the number of feature vectors in each class. Experimental results have shown that drastic reduction of the reference database can be achieved while maintaining the classification performance with LBG clustering algorithm.

  • PDF

심층신경망을 이용한 조음 예측 모형 개발 (Development of articulatory estimation model using deep neural network)

  • 유희조;양형원;강재구;조영선;황성하;홍연정;조예진;김서현;남호성
    • 말소리와 음성과학
    • /
    • 제8권3호
    • /
    • pp.31-38
    • /
    • 2016
  • Speech inversion (acoustic-to-articulatory mapping) is not a trivial problem, despite the importance, due to the highly non-linear and non-unique nature. This study aimed to investigate the performance of Deep Neural Network (DNN) compared to that of traditional Artificial Neural Network (ANN) to address the problem. The Wisconsin X-ray Microbeam Database was employed and the acoustic signal and articulatory pellet information were the input and output in the models. Results showed that the performance of ANN deteriorated as the number of hidden layers increased. In contrast, DNN showed lower and more stable RMS even up to 10 deep hidden layers, suggesting that DNN is capable of learning acoustic-articulatory inversion mapping more efficiently than ANN.