The purposes of this study were to develop and introduce a novel intraoral appliance for bruxism composed of power switch and biofeedback device and further to examine inter- and intra-reliability of the appliance prior to clinical tests. The newly-developed appliance consisted of detection sensors, a central processing unit (CPU), a reactor and a storage unit and a displayer. Compact-sized, waterproof switches were selected as bruxism detection sensor and any sensor activation by clenching or grinding event was processed at the CPU and transmitted, by radio wave, to the reactor and storage unit and triggered auditory or vibratory signal, subsequently producing biofeedback to the patient with bruxism. The data on bruxing event in the storage unit can be displayed on the computer, making it possible analyzing frequency, duration and nature of bruxism. Cast models were obtained from ten volunteers with normal occlusion to evaluate reliability of the appliances. For inter-operator reliability on the intraoral appliances, each operator of the two fabricated the appliance for the same subject and compared the minimal contact forces provoking auditory biofeedback reaction in vertical, lateral and central directions. Intra-operator reliability was also investigated on the appliances made by a single operator at two separate times with an interval of two days. Conclusively, the newly-developed appliance is compact and safe to use in oral circumstance and easy to make. Furthermore, it had to be proven reliability excellent enough to apply in clinical settings. Thus, it is assumed that this appliance with the processor and the storage of data and auditory or vibratory biofeedback function is available and useful to analyze and control bruxism.
Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with
Purpose: Renal stones are common and typically arise within the collecting system. The renal sinus are contains the collection system, the renal vessels, lymphatcs, fat, and fibrous tissue. Because of the compression of all the large echoes in signal processing, the echo from the renal stone generally cannot be distinguished from large echoes emanating from normal structures of the renal sinus. Use of ultrasonography has been difficult for detecting small renal stone without posterior shadowing and chemical composition of stone. The aim of study was measuring for posterior acoustic shadowing to a stone for various scan parameter and it examines a help in renal stone diagnosis. Material & Methods: The stone was place on sponge examined in a water bath with a 3.5MHz or 7.5MHz transducer(LOGIQ 400, USA). First, tested a variety of gain. Second, tested a variety of dynamic range. Third, tested a variety of focal zone. Fourth, measuring of the echo level for low and high frequency for depth. Results: 1) Average echo level was 98 for low total gain(10 dB) and was 142 for high total gain(40 dB). Posterior acoustic shadowing of renal stone was clear for low gain. 2) Average echo level was 129 for low dynamic range(42 dB) and was 101 for high dynamic range(72 dB). Posterior acoustic shadowing of renal stone was clear for high dynamic range. 3) When stone is in focal zone of transducer, definite posterior acoustic shadow is identified. 4) Stone was clear appeared for high frequency(7.5 MHz) than low frequency(3.5 MHz) and it is not distorted. Conclusion: The demonstration of an posterior acoustic shadow of renal stone dependents on several technical factors such as gain, dynamic range, focus, and frequency. This various factors are a help in renal stone diagnosis.
One of the subtle problems that make noise control difficult for engineers is “the invisibility of noise or sound.” The visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical or numerical means to visualize the sound field have been attempted and as a result, a great deal of progress has been accomplished, for example in the field of visualization of turbulent noise. However, most of the numerical methods are not quite ready to be applied practically to noise control issues. In the meantime, fast progress has made it possible instrumentally by using multiple microphones and fast signal processing systems, although these systems are not perfect but are useful. The state of the art system is recently available but still has many problematic issues : for example, how we can implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently it is often difficult to determine the origin of the noise and the spatial shape of noise, as highlighted in the title. The first part of this paper introduces a brief history, which is associated with “sound visualization,” from Leonardo da Vinci's famous drawing on vortex street (Fig. 1) to modern acoustic holography and what has been accomplished by a line or surface array. The second part introduces the difficulties and the recent studies. These include de-Dopplerization and do-reverberation methods. The former is essential for visualizing a moving noise source, such as cars or trains. The latter relates to what produces noise in a room or closed space. Another mar issue associated this sound/noise visualization is whether or not Ivecan distinguish mutual dependence of noise in space : for example, we are asked to answer the question, “Can we see two birds singing or one bird with two beaks?"
GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.
The purpose of this study is to evaluate the effectiveness of supportive devices which are for minimizing the patient's movement during lower extremity angiography and to verify image quality of phantom by analyzing of Mask image, DSA image and Roadmap image into SNR and CNR. As a result of comparing SNR with CNR of mask image obtained by DSA technique using the phantom alone and phantom placed on the supportive devices, there was no significant difference between about 0~0.06 for SNR and about 0~0.003 for CNR. The study showed about 0.11~0.35 for SNR and 0.016~0.031 for CNR of DSA imaging by DSA technique about only water phantom of the blood vessel model and the water phantom placed on the device. Analyzing SNR and CNR of Roadmap technique about water phantom on the auxiliary device (hardboard paper, pomax, polycarbonate, acrylic) and water phantom alone, there was no significant difference between 0.02~0.05 for SNR and 0.002~0.004 for CNR. In conclusion, there was no significant difference on image quality by using supportive devices made by hardboard paper, pomax, polycarbonate or acryl regardless of whether using supportive devices or not. Supportive devices to minimize of the patient's movement may reduce the total amount of contrast, exam-time, radiation exposure and eliminate risk factors during angiogram. Supportive devices made by hardboard paper can be applied easily during angiogram due to advantages of reasonable price and simple processing. It is considered that will be useful to consider cost efficiency and types of materials and their properties in accordance with purpose and method of the study when the operator makes and uses supportive devices.
Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with
Recently, the high value added business is steadily growing in the culture and art area. To generated high value from a performance, the satisfaction of audience is necessary. The flow in a critical factor for satisfaction, and it should be induced from audience and measures. To evaluate interest and emotion of audience on contents, producers or investors need a kind of index for the measurement of the flow. But it is neither easy to define the flow quantitatively, nor to collect audience's reaction immediately. The previous studies of the group flow were evaluated by the sum of the average value of each person's reaction. The flow or "good feeling" from each audience was extracted from his face, especially, the change of his (or her) expression and body movement. But it was not easy to handle the large amount of real-time data from each sensor signals. And also it was difficult to set experimental devices, in terms of economic and environmental problems. Because, all participants should have their own personal sensor to check their physical signal. Also each camera should be located in front of their head to catch their looks. Therefore we need more simple system to analyze group flow. This study provides the method for measurement of audiences flow with group synchronization at same time and place. To measure the synchronization, we made real-time processing system using the Differential Image and Group Emotion Analysis (GEA) system. Differential Image was obtained from camera and by the previous frame was subtracted from present frame. So the movement variation on audience's reaction was obtained. And then we developed a program, GEX(Group Emotion Analysis), for flow judgment model. After the measurement of the audience's reaction, the synchronization is divided as Dynamic State Synchronization and Static State Synchronization. The Dynamic State Synchronization accompanies audience's active reaction, while the Static State Synchronization means to movement of audience. The Dynamic State Synchronization can be caused by the audience's surprise action such as scary, creepy or reversal scene. And the Static State Synchronization was triggered by impressed or sad scene. Therefore we showed them several short movies containing various scenes mentioned previously. And these kind of scenes made them sad, clap, and creepy, etc. To check the movement of audience, we defined the critical point,
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70