• Title/Summary/Keyword: sidelobe level suppression

Search Result 16, Processing Time 0.025 seconds

Implementation and Performance Evaluation of TMSC6711 DSP-based Digital Beamformer

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Chang Sheng , Liew
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.25-36
    • /
    • 2006
  • This paper discusses the implementation and performance evaluation of a DSP-based digital beamformer using the Texas Instrument TMSC6711 DSP processor for smart antenna applications. Two adaptive beamforming algorithms which served as the brain for the beamformer, the Normalized Least-Mean-Square (NLMS) and the Constant Modulus Algorithms (CMA) were embedded into the processor and evaluated. Result shows that the NLMS-based digital beamformer outperforms the CMA-based digital beamformer: 1)For NLMS algorithm, the antenna steers to the direction of the desired user even at low iteration value and the suppression level towards the interferer increases as the number of iteration increase. For CMA algorithm, the beam radiation pattern slowly steers to the desired user as the number of iteration increased, but at arate slower than NLMS algorithm and the sidelobe level is shown to increases as the number of iteration increase. 2) The NLMS algorithm has faster convergence than CMA algorithm and the error convergence for CMA algorithm sometimes is subject to misadjustment.

  • PDF

The Design of the Ka-band Lens Antenna for Navigation Radar on Helicopter (헬기 장착 항행 레이더용 Ka-대역 렌즈 안테나 설계)

  • Moon Sang-Man;Kim Hyounk-Young;Kim In-Kyu;Lee Sang-Jong;Kim Tae-Sik;Lee Hee-Chang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.53-60
    • /
    • 2004
  • In this paper, the radar antenna of navigation radar on helicopter was suggested to Ka-band lens antenna. It is type of the streamlined convex lens to reduce the air resistivity when helicopter was navigated. Although aperture area is smaller than the standard antenna just like horns, the gain is higher and beamwidth is smaller than standard horns. We made the lens by using maximum flare angle of the horn and dielectric constant of the lens. As a result, when aperture diameter was 280mm and focal length was 145mm, the return loss -21.25dB, the gain was 32.2dBi, E and H beamwidth was $1.8^{\circ}$(E-plane), $1.4^{\circ}$(H-plane), nearly $1.5^{\circ}$, and side-lobe level was -18.4 dB(E-plane), -19.5dB(H-plane) lower were presented. So this suggested type can be used for the radar antenna of navigation radar on helicopter, and it will possible just a little some sidelobe suppression by using the choked horn as a feeder horn.

SAW Serial Type AWQPSK Modulator (탄성표면파 직렬형 AWQPSK 변조기)

  • Ha, Jun-Ho;Kim, Geun-Muk;Park, Yong-Seo;Hwang, Geum-Chan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.43-51
    • /
    • 1987
  • In this work an implementation of SAW based serial type AWQPSK modulator is studied. The SAW AWQPSK modulator consisting of input apodized IDT and output uniform IDT with center frequency of 20 MHz and bit rate of 4MHz has been designed and fabricated on $YZ-LiNbO_3$ substrate. Measured center frequency and null-to-null bandwidth are 20MHz, respectively. The sidelobe suppression is achieved 60dB below the peak mainlobe level. Measured responses meet the theoretical values with tolerable amount of deviation. SAW-based modulator simplifies the implementation of AWQPSK which uses complex pulse shape as a baseband pulse.

  • PDF

Direct blast suppression for bi-static sonar systems with high duty cycle based on adaptive filters (고반복률을 갖는 양상태 소나 시스템에서의 적응형 필터를 이용한 송신 직접파 제거 연구)

  • Lee, Wonnyoung;Jeong, Euicheol;Yoon, Kyungsik;Kim, Geunhwan;Kim, Dohyung;You, Yena;Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.446-460
    • /
    • 2022
  • In this paper, we propose an algorithm to improve target detection rate degradation due to direct blast in a bi-static sonar systems with high duty cycle using an adaptive filters. It is very important to suppress the direct blast in the aforementioned sonar systems because it has a fatal effect on the actual system operation. In this paper, the performance was evaluated by applying the Normalized Least Mean Square (NLMS) and Recursive Least Square (RLS) algorithms to the simulation and sea experimental data. The beam signals of the target and direct blast bearings were used as the input and desired signals, respectively. By optimizing the difference between the two signals, the direct blast is removed and only the target signal is remained. As a result of evaluating the results of the matched filter in the simulation, it was confirmed that the direct blast was removed to the noise level in both Linear Frequency Modultated (LFM) and Generalized Sinusoidal Frequency Modulated (GSFM), and in the case of GSFM, the target sidelobe decreased by more than 20 dB, thereby improving performance. In the sea experiment, it was confirmed that the LFM reduced the level of the transmitted direct wave by 10 dB, the GSFM reduced the level of the transmitted direct wave by about 4 dB, and the side lobe of the target decreased by about 4 dB, thereby improving the performance.

Study on the Beam Pattern Compensation with Planar Active Phased Array Antenna (평면형 능동위상 배열안테나 빔 패턴 보상에 관한 연구)

  • Chon, Sang-Mi;Na, Hyung-Ki;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.217-222
    • /
    • 2014
  • This paper discusses about the beam pattern distortion caused by the failures of some antenna modules in the active array antenna and analyses the possibility of improvement through applying the beam pattern compensation method previously studied. The beam pattern distortion which is mostly represented as an increase of the sidelobe level, can be suppressed through re-synthesizing each module's magnitude and phase. This method was applied to the prototype of active array antenna system, and the results of antenna pattern distortion and compensation were analyzed and measured in the Near Field Chamber. Array failures are generally divided into random TR module failures and TRU(TR Unit: combination of TR modules, Beam Computation module, Power supply module) failures. The results of beam pattern compensation were analyzed in each failure and compared to the results of the simulation. The beam pattern compensation results applied to the real active antenna array system showed the similar to the simulation results. Consequently, it was verified the beam pattern could be compensated with the magnitude and phase adjustment of other normal antenna modules.

Shipboard Active Phased Array Antenna System for Satellite Communications (위성 통신용 선박 탑재 능동 위상배열 안테나 시스템)

  • 전순익;채종석;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1089-1097
    • /
    • 2002
  • In this paper, the novel shipboard Active Phased Array Antenna(APAA) system for maritime mobile satellite communications is introduced. The antenna uses novel technologies like wide range hybrid tracking, single antenna elements with both of Rx and Tx, asymmetrical array structure, interference isolation between Rx and Tx, and error correction method from frequency scan effect. The antenna has single aperture for both of Rx and Tx with 32 $\times$ 4 two-dimensional array. The antenna has two beams. Its frequencies are 7.25 ~ 7.75 GHz for Rx and 7.9 ~ 8.4 GHz for Tx. The antenna gains are 35.4 dBi for Rx and 35.7 dBi for Tx, those are 54 % of efficiency. The electrically steering ranges are $\pm$35$^{\circ}$ of elevation direction and $\pm$4$^{\circ}$ of azimuth direction. The mechanical control ranges at hybrid tracking capability are continuous 360$^{\circ}$ of azimuth direction and $\pm$10$^{\circ}$ of elevation direction. The antenna has 2.2$^{\circ}$ of 3 dB beamwidth, -14 dB of sidelobe level, and 21 dB of cross-pol suppression. The antenna performance was measured by near field measurement set. Its system performance was tested on the ship motion simulator and with the satellite transponder simulator. The test result showed that its tracking error was within -3 dB from its peak gain under motion condition. The antenna system was tested by real modulated Direct Broadcasting Satellite(DBS) signals to check its communication processing function.