• Title/Summary/Keyword: side to thickness ratio

Search Result 189, Processing Time 0.028 seconds

An Experimental Study on Overlap Control at Plate Rolling (후판압연에서의 오버랩 제어에 대한 실험적 연구)

  • 천명식;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.376-385
    • /
    • 1991
  • For manufacturing trimming-free plates which have rectangular shaped edges and straight edges in as-rolled state, it is necessary to investigate rolling characteristics of overlap, bulge and width deviation etc. in a standardized plate rolling process. The present wok is for preventing edge overlap as the first approach to develop trimming-free plate rolling technique. An experimental study on overlap control was done with plasticine material in order to examine influence factors and find a control method by use of a laboratory mill scaled down to one tenth of actual production mill. It was found that edge overlapping was increased with the increase of slab thickness and of broadside rolling ratio, but decreased with the increase of chamfered amount on slab edges. In the simulated rolling experiment with edge chamfered slabs of various chamfered angles, the chamfered angle of 60.deg. was the most effective one for reducing overlapping irrespective of slab thickness and of broadside rolling ratio.

A Study on the Displacement Magnification Mechanism of Two-Lever System using Flexure Hinge (유연 힌지를 이용한 이중레버 시스템의 변위증폭 메카니즘에 관한 연구)

  • Jea, Wone-Soo;Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • The high-technology industries including a semi-conductor and an information communication need an ultra-precision technology from the technological points of view. Nano technology based on an ultra-precision technology is being studied to overcome the delicate technology that may occur in the semi-conductor fields. Then, the transferring equipment with high resolution and long displacement becomes an important technology. The goal of this study is to analyze the displacement magnification mechanism driven by piezoelectric actuator which has high resolution and fast response characteristics using flexure hinge with the merits of soft displacement, negligible back-lash and stick-slip, and no-lubrication. The analyses to reduce the magnification losses occurred during the magnification process are performed using ANSYS software based on FEM. The five design variables such as arm thickness, thickness of hinge, radius of hinge, length of input side at the 1st lever and magnification ratio of 1st lever are optimized to induce the maximum magnification ratio using Taguchi method.

  • PDF

A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation

  • Abazid, Mohammad Alakel;Alotebi, Muneerah S.;Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.219-232
    • /
    • 2018
  • This paper deals with the static bending of various types of FGM sandwich plates resting on two-parameter elastic foundations in hygrothermal environment. The elastic foundation is modeled as Pasternak's type, which can be either isotropic or orthotropic and as a special case, it converges to Winkler's foundation if the shear layer is neglected. The present FGM sandwich plate is assumed to be made of a fully ceramic core layer sandwiched by metal/ceramic FGM coats. The governing equations are derived from principle of virtual displacements based on a shear and normal deformations plate theory. The present theory takes into account both shear and normal strains effects, thus it predicts results more accurate than the shear deformation plate theories. The results obtained by the shear and normal deformation theory are compared with those available in the literature and also with those obtained by other shear deformation theories. It is concluded that the present results are slightly deviated from other results because the normal deformation effect is taken into account. Numerical results are presented to show the effects of the different parameters, such as side-to-thickness ratio, foundation parameters, aspect ratio, temperature, moisture, power law index and core thickness on the stresses and displacements of the FG sandwich plates.

Effects of Three Side Ratios of the Rectangular Substrate on the Resonant Characteristics of the Ultra-small Size Resonator Using Its Length Extensional Vibration (사각 기판의 길이진동을 이용하는 초소형 공진자에 있어서 사각 기판의 세변의 길이비가 공진특성에 미치는 영향)

  • 이개명;한성훈;김병효
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.932-937
    • /
    • 2000
  • The length extensional vibration mode of a piezoelectric ceramic substrate is used in fabricating the ultra-small size resonators and filters. In general, the three side ratios of the rectangular substrate affect the resonant characteristics of the resonator using its length extensional vibration. In this paper, their relationships are studied. We know that changing the ratio of its length to its width makes possible to change the resonant frequency of the width vibration without degrading the length extensional vibration. And frequency constant for length extensional vibration becomes slightly small as the substrate thickness becomes thin, but it does not change as its length changes. Electro-mechanical coupling factor for length extensional vibration, k$\_$31/ does not change as its length changes within length/width$\geq$4, but it becomes small as its width increases.

  • PDF

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.85-104
    • /
    • 2013
  • The present work deals with the thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined trigonometric shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-parameter Pasternak foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending response of functionally graded plates.

Modeling of Pressure Drop for Water Vapor Flow across Tube Banks inside Horizontal Tube Absorber

  • Phan Thanh Tong;Yoon Jung-In;Kim Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.483-493
    • /
    • 2006
  • A model for a pressure drop of water vapor flow across tube banks in a horizontal tube absorber of an absorption chiller/heater using LiBr solution as a working fluid has been developed based on a commercial 20RT(70kW) absorption chiller/heater. The numerical results show that the characteristic of the pressure drop in the shell side of the horizontal tube absorber is completely different from that in a conventional shell and tube heat exchanger. Especially, solution film thickness has significant influence on the vapor pressure drop in the horizontal tube absorber. In addition, the effects by the tube diameters, the longitudinal pitch to diameter ratio, and Reynolds number of the vapor flow, on the vapor pressure drop have been studied to evaluate the compactness of tube absorber. It was found that the vapor pressure drop decreases as tube diameter increases, the longitudinal pitch to diameter ratio increases, and Reynolds number of the vapor flow decreases. A comparison of the present study results with well-established experimental and numerical results showed a good overall agreement.

Formability of Sheet Metal in Noncircular Cup Drawing(I) (for Rectangular Cross Section) (비원형 단면에 대한 판재 성형성(I) (직사각형 단면에 대하여))

  • Shin, J.H.;Kim, M.S.;Seo, D.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • The effects of punch and blank shapes in the rectangular cup drawing process are examined experimentally to improve the formabilities. For this purpose, three blank shapes which are h-bl., G-bl., and T-bl., and five punch shape factors which are the ratios of two adjacent side lengths in rectangular cross section are adopted. The constructing methods of the three blank shapes are as follows. The h-bl. is designed by slip-line theory, and the G-bl. is selected for the similar shape to the punch. The T-bl. is obtained by the drawing method which is introduced in the technical references. The five punch shape factors are selected for length/width=1, 1.25, 1.5, 1.75 and 2. The experimental procedures are performed for all the above forming conditions to investigate and compare the formabilities. As a result, it is verified experimentally that the rectangular cups drawn by the h-bl. are more ideal than those drawn by G-bl. and T-bl.. They have not only higher limiting drawing ratio, more uniformity in drawn cup heights and more ideal thickness distributions, but also need relatively less maximum drawing forces.

  • PDF

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Bran Structure and Water Uptake Rate of Japonica and Tongil-type Brown Rices (일반계와 통일계 현미의 겨층구조와 수분 흡수 속도)

  • Lee, Soo-Jeung;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.37 no.2
    • /
    • pp.94-99
    • /
    • 1994
  • Bran structure and water uptake rate for brown rices of thirteen japonica and twelve Tongil cultivars were investigated. The japonica type was shorter in length and had lower value in the ratio of length to width than Tongil one. No differences were observed in width and weight between the two types. The number of aleurone layer and the thickness of bran layer were higher in dorsal side than in ventral side in all rice cultivars. The structure in ventral side was similar but the number of aleurone layer in dosal side was higher in japonica samples. There were no significant differences in water uptake rates showed no correlation with the bran structure.

  • PDF