• Title/Summary/Keyword: siamese network

Search Result 34, Processing Time 0.019 seconds

Improving Few-Shot Learning through Self-Distillation (Self-Distillation을 활용한 Few-Shot 학습 개선)

  • Kim, Tae-Hun;Choo, Jae-Gul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.617-620
    • /
    • 2018
  • 딥러닝 기술에 있어서 대량의 학습 데이터가 필요하다는 한계점을 극복하기 위한 시도로서, 적은 데이터 만으로도 좋은 성능을 낼 수 있는 few-shot 학습 모델이 꾸준히 발전하고 있다. 하지만 few-shot 학습 모델의 가장 큰 단점인 적은 데이터로 인한 과적합 문제는 여전히 어려운 숙제로 남아있다. 본 논문에서는 모델 압축에 사용되는 distillation 기법을 사용하여 few-shot 학습 모델의 학습 문제를 개선하고자 한다. 이를 위해 대표적인 few-shot 모델인 Siamese Networks, Prototypical Networks, Matching Networks에 각각 distillation을 적용하였다. 본 논문의 실험결과로써 단순히 결과값에 대한 참/거짓 뿐만 아니라, 참/거짓에 대한 신뢰도까지 같이 학습함으로써 few-shot 모델의 학습 문제 개선에 도움이 된다는 것을 실험적으로 증명하였다.

A Study on the Establishment of Comparison System between the Statement of Military Reports and Related Laws (군(軍) 보고서 등장 문장과 관련 법령 간 비교 시스템 구축 방안 연구)

  • Jung, Jiin;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.109-125
    • /
    • 2020
  • The Ministry of National Defense is pushing for the Defense Acquisition Program to build strong defense capabilities, and it spends more than 10 trillion won annually on defense improvement. As the Defense Acquisition Program is directly related to the security of the nation as well as the lives and property of the people, it must be carried out very transparently and efficiently by experts. However, the excessive diversification of laws and regulations related to the Defense Acquisition Program has made it challenging for many working-level officials to carry out the Defense Acquisition Program smoothly. It is even known that many people realize that there are related regulations that they were unaware of until they push ahead with their work. In addition, the statutory statements related to the Defense Acquisition Program have the tendency to cause serious issues even if only a single expression is wrong within the sentence. Despite this, efforts to establish a sentence comparison system to correct this issue in real time have been minimal. Therefore, this paper tries to propose a "Comparison System between the Statement of Military Reports and Related Laws" implementation plan that uses the Siamese Network-based artificial neural network, a model in the field of natural language processing (NLP), to observe the similarity between sentences that are likely to appear in the Defense Acquisition Program related documents and those from related statutory provisions to determine and classify the risk of illegality and to make users aware of the consequences. Various artificial neural network models (Bi-LSTM, Self-Attention, D_Bi-LSTM) were studied using 3,442 pairs of "Original Sentence"(described in actual statutes) and "Edited Sentence"(edited sentences derived from "Original Sentence"). Among many Defense Acquisition Program related statutes, DEFENSE ACQUISITION PROGRAM ACT, ENFORCEMENT RULE OF THE DEFENSE ACQUISITION PROGRAM ACT, and ENFORCEMENT DECREE OF THE DEFENSE ACQUISITION PROGRAM ACT were selected. Furthermore, "Original Sentence" has the 83 provisions that actually appear in the Act. "Original Sentence" has the main 83 clauses most accessible to working-level officials in their work. "Edited Sentence" is comprised of 30 to 50 similar sentences that are likely to appear modified in the county report for each clause("Original Sentence"). During the creation of the edited sentences, the original sentences were modified using 12 certain rules, and these sentences were produced in proportion to the number of such rules, as it was the case for the original sentences. After conducting 1 : 1 sentence similarity performance evaluation experiments, it was possible to classify each "Edited Sentence" as legal or illegal with considerable accuracy. In addition, the "Edited Sentence" dataset used to train the neural network models contains a variety of actual statutory statements("Original Sentence"), which are characterized by the 12 rules. On the other hand, the models are not able to effectively classify other sentences, which appear in actual military reports, when only the "Original Sentence" and "Edited Sentence" dataset have been fed to them. The dataset is not ample enough for the model to recognize other incoming new sentences. Hence, the performance of the model was reassessed by writing an additional 120 new sentences that have better resemblance to those in the actual military report and still have association with the original sentences. Thereafter, we were able to check that the models' performances surpassed a certain level even when they were trained merely with "Original Sentence" and "Edited Sentence" data. If sufficient model learning is achieved through the improvement and expansion of the full set of learning data with the addition of the actual report appearance sentences, the models will be able to better classify other sentences coming from military reports as legal or illegal. Based on the experimental results, this study confirms the possibility and value of building "Real-Time Automated Comparison System Between Military Documents and Related Laws". The research conducted in this experiment can verify which specific clause, of several that appear in related law clause is most similar to the sentence that appears in the Defense Acquisition Program-related military reports. This helps determine whether the contents in the military report sentences are at the risk of illegality when they are compared with those in the law clauses.

Pose Estimation and Image Matching for Tidy-up Task using a Robot Arm (로봇 팔을 활용한 정리작업을 위한 물체 자세추정 및 이미지 매칭)

  • Piao, Jinglan;Jo, HyunJun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.299-305
    • /
    • 2021
  • In this study, the task of robotic tidy-up is to clean the current environment up exactly like a target image. To perform a tidy-up task using a robot, it is necessary to estimate the pose of various objects and to classify the objects. Pose estimation requires the CAD model of an object, but these models of most objects in daily life are not available. Therefore, this study proposes an algorithm that uses point cloud and PCA to estimate the pose of objects without the help of CAD models in cluttered environments. In addition, objects are usually detected using a deep learning-based object detection. However, this method has a limitation in that only the learned objects can be recognized, and it may take a long time to learn. This study proposes an image matching based on few-shot learning and Siamese network. It was shown from experiments that the proposed method can be effectively applied to the robotic tidy-up system, which showed a success rate of 85% in the tidy-up task.

Training of a Siamese Network to Build a Tracker without Using Tracking Labels (샴 네트워크를 사용하여 추적 레이블을 사용하지 않는 다중 객체 검출 및 추적기 학습에 관한 연구)

  • Kang, Jungyu;Song, Yoo-Seung;Min, Kyoung-Wook;Choi, Jeong Dan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.274-286
    • /
    • 2022
  • Multi-object tracking has been studied for a long time under computer vision and plays a critical role in applications such as autonomous driving and driving assistance. Multi-object tracking techniques generally consist of a detector that detects objects and a tracker that tracks the detected objects. Various publicly available datasets allow us to train a detector model without much effort. However, there are relatively few publicly available datasets for training a tracker model, and configuring own tracker datasets takes a long time compared to configuring detector datasets. Hence, the detector is often developed separately with a tracker module. However, the separated tracker should be adjusted whenever the former detector model is changed. This study proposes a system that can train a model that performs detection and tracking simultaneously using only the detector training datasets. In particular, a Siam network with augmentation is used to compose the detector and tracker. Experiments are conducted on public datasets to verify that the proposed algorithm can formulate a real-time multi-object tracker comparable to the state-of-the-art tracker models.