• Title/Summary/Keyword: shuttle valve

Search Result 15, Processing Time 0.017 seconds

Computer Simulation Study of the Hydrostatic Transmission Applied to the Rack-Bar Type Sluice Gate (래크바형 수문권양기에 적용된 정유압장치의 컴퓨터 시뮬레이션에 의한 작동특성 연구)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.2
    • /
    • pp.14-21
    • /
    • 2009
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, two counter balance valves, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations.

  • PDF

Pressure Measurement in Double Inlet Pulse Tube Refrigerator (이중 입구형 맥동관 냉동기에서의 압력 파형 측정)

  • 정제헌;남관우;정상권;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.390-396
    • /
    • 2004
  • A double-inlet pulse tube refrigerator was fabricated as a U-shape with $\Phi$19.0 mm${\times}$125 mm regenerator packed by #200 stainless steel mesh and $\Phi$12.7 mm${\times}$125 mm pulse tube. A pressure sensor was installed at the inlet of the regenerator and a differential pressure sensor was installed across the bypass. Amplitude of the pulsating pressure was independent of the opening of the orifice and the bypass valves. Helium flow through the orifice and the bypass was calculated based on the measured pressure. Energy loss through the orifice and the bypass was evaluated with the measured pressure and the calculated helium flow rate. The energy loss, which is equivalent to the refrigeration capacity at the cold end of the ideal pulse tube refrigerator, was mainly generated through the orifice. It was proportional to the opening of the orifice valve, but the real refrigerator displayed the best performance at the optimized opening of the orifice valve. This optimized performance of the tested pulse tube refrigerator can be explained by additional refrigeration losses. As an example, the shuttle heat transfer loss of the pulse tube was calculated from the measured experimental data.

Stability evaluation of a proportional valve controller for forward-reverse power shuttle control of agricultural tractors

  • Jeon, Hyeon-Ho;Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Hyeon;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.597-606
    • /
    • 2021
  • Due to the characteristics of the farmland in Korea, forward and reverse shift is the most used. The fatigue of farmers is caused by forward and reverse shifting with a manual transmission. Therefore, it is necessary to improve the convenience of forward and backward shifting. This study was a basic study on the development of a current control system for forward and reverse shifting of agricultural tractors using proportional control valves and a controller. A test bench was fabricated to evaluate the current control accuracy of the control system, and the stability of the controller was evaluated through CPU (central processing unit) load measurements. A controller was selected to evaluate the stability of the proportional valve controller. The stability evaluation was performed by comparing and analyzing the command current of the controller and the actual current measured. The command current was measured using a CAN (controller area network) communication device and DAQ (data acquisition). The actual current was measured with a current probe and an oscilloscope. The control system and stability evaluation was performed by measuring the CPU load on the controller during control operations. The average load factor was 12.27%, and when 5 tasks were applied, it was shown to be 70.65%. This figure was lower than the CPU limit of 74.34%, when 5 tasks were applied and was judged to be a stable system.

Automatic Transmission Design Analysis of the Tractor from Advanced Company (선진사 트랙터 자동변속기 설계 분석)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2013
  • A tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. As the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. Though manual and power shuttle transmissions are produced by domestic corporations, development for full-automatic power shift transmissions has never been challenged, and so related technology level is quite low. This paper gives a survey of the automatic transmissions from advanced foreign company, which includes layout of gear train, the way hydraulics controls clutches and brakes, electronic control system. The results are expected to be utilized as a basis in the development of original power train design for tractor.

Development of Drifter's Hydraulic System Model and Its Validation (드리프터의 유압시스템 해석모델 개발 및 신뢰성 검토)

  • Noh, D.K.;Jang, J.S.;Seo, J.H.;Kim, H.S.;Park, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • The goal of this study drifter is to understand the operating mechanism of a drifter and to suggest a reliable analysis model which can be used for evaluating the drifter's performance from the viewpoint of impact frequency and energy. For this, the working principle of drifter and functions of its main components were analyzed, and a simulation model was developed based on the analysis. The model was validated using experimental tests on a test-bench. A comparative study of simulation and experimental results indicated that the suggested model accurately represents the real drifter system in terms of impact frequency and impact energy per blow.