• Title/Summary/Keyword: shunt damping

Search Result 50, Processing Time 0.024 seconds

Multi-mode noise reduction of using piezoelectric shunt damping smart panels (압전 션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구)

  • Kim, Joon-Hyoung;Kim, Jaehwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.327.2-327
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductor, and load resistor is devised to dissipate the maximum energy into the joule heat energy For multi mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. (omitted)

  • PDF

Multi-mode Noise Reduction of Smart Panels Using Piezoelectric Shunt Damping (압전션트 댐핑을 이용한 지능패널의 다중 모드 소음 저감)

  • 김준형;김재환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • This paper presents the multi-mode noise reduction of smart panels of which passive piezoelectric shunt damping is introduced. For the piezoelectric shunt damping, a passive shunt circuit composed of inductors and a load resistor is connected to the piezoelectric patch mounted on the panel structure. An electrical impedance model is introduced for the system based on the measured electrical impedance, and the criteria for maximum energy dissipation at the shunt circuit is used to find the optimal shunt parameters. For multi-mode shunt damping, the shunt circuit is modified by the introduction of a block circuit. Also the optimal location of the piezoelectric patch is studied by finite element analysis in order to cause the maximum admittance from the patch for each mode of the structure. An acoustic test is performed for the panels and a remarkable noise reduction is obtained in multiple modes of the panel structure.

Broadband Noise Reduction of Smart Panels using Piezoelectric Shunt Circuits (압전션트 회로를 이용한 지능패널의 광대역 소음저감에 관한 연구)

  • 정영채;김재환;이중근;하성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.624-629
    • /
    • 2003
  • In this paper, broadband shunt technique for increasing transmission loss is experimentally investigated. Piezoelectric shunt damping is studied using resonant shunt circuit and negative capacitor shunt circuit. A resonant shunt circuit is implemented by using a resistor and inductor. Negative Capacitor shunt damping is similar in nature to resonant shunt damping techniques, as a single piezoelectric material is used to dampen multi-mode. Performance of both methods is experimentally studied for noise reduction. This is based upon SAE J1400 test method and a transmission loss measurement system is provided for it. This paper will present the test setup fer transmission loss measurement and the tuning procedure of shunt circuits. Finally the results of sound transmission tests will be shown.

  • PDF

Multi-mode noise reduction of using piezoelectric shunt damping smart panels (압전션트를 이용한 패널의 다중 모드 소음 저감에 관한 연구)

  • Kim, Joon-Hyoung;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.216-221
    • /
    • 2002
  • In this paper, the transmitted noise reduction of smart panels of which passive piezoelectric shunt damping is used, is experimentally studied. Shunt damping experiments are based on the measured electrical impedance model. A passive shunt circuit composed of inductors, and a load resistor is devised to dissipate the maximum energy into the joule heat energy. For multi-mode shunt damping, the shunt circuit is redesigned by adding a blocking circuit. Also the optimal location of the piezoelectric patch is studied by FEM in order to cause the maximum admittance from the patch for each mode of aluminum plate. In results, the transmitted sound pressure level of panels is efficiently reduced for multi-modes

  • PDF

Transmitted sound reduction performance of smart panels with different piezoelectric materials through piezo-damping (압전재료에 따른 지능패널의 전달소음저감성능)

  • 이중근;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.127-132
    • /
    • 2001
  • In this paper, transmitted sound reduction performance of smart panels is studied according to different piezoelectric materials with piezoelectric shunt damping. Peizo-damping is implemented by using a newly proposed tuning method. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. By measuring the electrical impedance at the piezoelectric patch bonded on a structure, an equivalent electrical model is constructed near the system resonance frequency. After shunting elements are connected to the equivalent circuit, the shunt parameters are optimally searched based on the criterion of maximizing the dissipated energy at the shunt circuit. Transmitted sound reduction performance is compared according to different piezoelectric materials with peizo-damping. Two piezoelectric materials are selected: PZT-5 and QuickPack IDE actuator. When resonant shunt circuit is considered, the use of PZT-5 exhibited the good sound reduction performance.

  • PDF

Shunt Damping of HDD Disk-Spindle System Using Piezoelectric Bimorph (압전 바이모프를 이용한 HDD 디스크-스핀들 시스템의 션트 댐핑)

  • Lim S. C.;Choi S. B,;Park Y P.;Park N, C.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.84-92
    • /
    • 2005
  • This work presents the feasibility of shunt damping far vibration suppression of the rotating HDD disk-spindle system using piezoelectric bimorph. A target vibration mode which significantly restricts the recording density increment of the drive is determined through modal analysis and a piezoelectric bimorph is designed to suppress unwanted vibration. After deriving the two-dimensional generalized electromechanical coupling coefficient of the shunted drive, the shunt damping of the system is predicted by simulating the displacement transmissibility using the coefficient. In addition, optimal design process using sensitivity analysis is undertaken in order to improve the shunt damping of the system. The effectiveness of the proposed methodology is verified through experimental implementation by observing the vibration characteristics of the rotating disk-spindle system in frequency domain.

  • PDF

Improvement of aeroelastic stability of hingeless helicopter rotor blade by passive piezoelectric damping

  • Yun, Chul-Yong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.54-64
    • /
    • 2006
  • To augment weakly damped lag mode stability of a hingeless helicopter rotor blade in hover, piezoelectric shunt with a resistor and an inductor circuits for passive damping has been studied. A shunted piezoceramics bonded to a flexure of rotor blade converts mechanical strain energy to electrical charge energy which is dissipated through the resistor in the R-L series shunt circuit. Because the fundamental lag mode frequency of a soft-in-plane hingeless helicopter rotor blade is generally about 0.7/rev, the design frequency of the blade system with flexure sets to be so. Experimentally, the measured lag mode frequency is 0.7227/rev under the short circuit condition. Therefore the suppression mode of this passive damping vibration absorber is adjusted to 0.7227/rev. As a result of damping enhancement using passive control, the passive damper which consists of a piezoelectric material and shunt circuits has a stabilizing effect on inherently weakly damped lag mode of the rotor blades, at the optimum tuning and resistor condition.

Admittance Analysis for Piezo Shunt Circuit with Application to CD-ROM Main Base (CD-ROM 메인 베이스에 적용한 압전 션트 회로의 어드미턴스 해석)

  • Kim Heung Soo;Park Jong-Sulg;Choi Seung-Bok;Park Yeong-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-240
    • /
    • 2005
  • In this paper, vibration suppression of a CD-ROM main base with piezoelectric shunt circuit is studied. Admittance is introduced to predict the performance of piezoelectric shunt damping. Numerical admittance obtained by commercial finite element code, ANSYS, correlates well with experimentally measured one. Multi-mode piezoelectric shunt damping is realized based on the target mode and frequencies obtained by the admittance analysis. Experimental results prove that admittance of the piezoelectric structure is capable of predicting the performance of piezoelectric shunt damping and the vibration of the main base with the piezoelectric patches is reduced effectively.

  • PDF

Admittance Analysis for Piezo Shunt Circuit with Application to CD-ROM Main Base (CD-ROM 메인 베이스에 적용한 압전 션트 회로의 어드미턴스 해석)

  • Kim, Heung-Soo;Park, Jong-Sung;Choi, Seung-Bok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, vibration suppression of a CD-ROM main base with piezoelectric shunt circuit is studied. Admittance is introduced to predict the performance of piezoelectric shunt damping. Numerical admittance obtained by commercial finite element code, ANSYS, correlates well with experimentally measured one. Multi-mode piezoelectric shunt damping is realized based on the target mode and frequencies obtained by the admittance analysis. Experimental results prove that admittance of the piezoelectric structure is capable of predicting the performance of piezoelectric shunt damping and the vibration of the main base with the piezoelectric patches is reduced effectively.

  • PDF

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF