• Title/Summary/Keyword: shrinkage rate

Search Result 451, Processing Time 0.023 seconds

Fundamental Properties of Lightweight Concrete with Dry Bottom Ash as Fine Aggregate and Burned Artificial Lightweight Aggregate as Coarse Aggregate (건식 바텀애시 경량 잔골재와 소성 인공경량 굵은골재를 사용한 콘크리트의 기초 특성)

  • Choi, Hong-Beom;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.267-274
    • /
    • 2018
  • Though the wet bottom ash has been used as a type of lightweight aggregate, dry bottom ash, new type bottom ash from coal combustion power plant, has scarcely researched. It is excellent lightweight aggregate in the view point of construction material. This study is performed to check the applicability of dry bottom ash as a fine aggregate in lightweight aggregate concrete, by analyzing various properties of fresh and hardened concrete. We get results that the slump of concrete is within the target range at less than 75% replacement rate of dry bottom ash, the air content is not affected by the replacement rate of dry bottom ash, the bleeding capacity is less than $0.025cm^3/cm^2$ at 75% under of the replacement rate of dry bottom ash, and the compressive strength of concrete show 90% or more comparing the base mix while initial strength development is a little low. Oven dry unit weight of concrete is reduced by 8.9% when replaced 100% dry bottom ash, and dry shrinkage tends to decrease depending on increase of replacement rate of dry bottom ash. Modulus of elasticity of concrete shows no decease at 50% over of the replacement rate of dry bottom ash, while modulus of elasticity of concrete decreases when the replacement rate increases further. The dry bottom ash, when used as a fine aggregate in lightweight concrete, can be used effectively without any deterioration in quality.

Characteristics of Photoresist-derived Carbon Nanofibers for Li-ion Full Cell Electrode

  • Kim, Hwan-Jun;Joo, Young-Hee;Lee, Sang-Min;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.265-269
    • /
    • 2014
  • Carbon nanofiber electrode has been fabricated for energy storage systems by the electrospinning of SU-8 precursor and subsequent pyrolysis. Various parameters including the applied voltage, the distance between syringe tip and target collector and the flow rate of the polymer affect the diameter of SU-8 electrospun nanofibers. Shrinkage during pyrolysis decreases the fiber diameter. As the pyrolysis temperature increases, the resistivity decreases dramatically. Low resistivity is one of the important characteristics of the electrodes of an energy storage device. Given the advantages of carbon nanofibers having high external surface area, electrical conductivity, and lithium intercalation ability, SU-8 derived carbon nanofibers were applied to the anode of a full lithium ion cell. In this paper, we studied the physical properties of carbon fiber electrode by scanning transmission microscopy, thermal gravimetric analysis, and four-point probe. The electrochemical characteristics of the electrode were investigated by cyclic voltammogram and electrochemical impedance spectroscopy plots.

Application of Art Clay Silver in Manufacturing Necklace (목걸이 제작에 있어서 Art Clay Silver활용에 관한 연구)

  • Park, Su-Jung;Koh, Je-Man;Mun, Sung
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.35-44
    • /
    • 2005
  • In the world, most of the metal technologists were as called as adornment artists than other field of industrial arts strongly industrial characters functional materials and manufacturing technology many used in the present age. In the study, one of adornments researched and material character analyzed about Art Clay Silver. The shrinkage rate of shape was about 0.24%. A shrinking phenomenon drying time thought of evaporation of water linking bonding agents and powders. After calcination of Art Clay Silver, the EDX used that just Ag 100% analyzed a result from the surface assay in the room temperature. A binder with powder in the room temperature considered to disappear, because it was been fume and smoke at high calcined temperature. A study showed when handicrafted necklaces make by these characteristic as using in difficult and delicated operations rather than naturally and beautifully expressive products.

  • PDF

Multiple Group Testing Procedures for Analysis of High-Dimensional Genomic Data

  • Ko, Hyoseok;Kim, Kipoong;Sun, Hokeun
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.187-195
    • /
    • 2016
  • In genetic association studies with high-dimensional genomic data, multiple group testing procedures are often required in order to identify disease/trait-related genes or genetic regions, where multiple genetic sites or variants are located within the same gene or genetic region. However, statistical testing procedures based on an individual test suffer from multiple testing issues such as the control of family-wise error rate and dependent tests. Moreover, detecting only a few of genes associated with a phenotype outcome among tens of thousands of genes is of main interest in genetic association studies. In this reason regularization procedures, where a phenotype outcome regresses on all genomic markers and then regression coefficients are estimated based on a penalized likelihood, have been considered as a good alternative approach to analysis of high-dimensional genomic data. But, selection performance of regularization procedures has been rarely compared with that of statistical group testing procedures. In this article, we performed extensive simulation studies where commonly used group testing procedures such as principal component analysis, Hotelling's $T^2$ test, and permutation test are compared with group lasso (least absolute selection and shrinkage operator) in terms of true positive selection. Also, we applied all methods considered in simulation studies to identify genes associated with ovarian cancer from over 20,000 genetic sites generated from Illumina Infinium HumanMethylation27K Beadchip. We found a big discrepancy of selected genes between multiple group testing procedures and group lasso.

JAW RELATION WITH PERMANENT RECORD BASES IN THE EDENTULOUS PATIENTS (총의치 환자에 있어 Permanent record base를 이용한 악간관계 기록)

  • Heo, Yun-Seok;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.231-239
    • /
    • 1995
  • When the complete denture is made, the record base for jaw relation is divided into temporary record base and permanent record base. However, The temporary record base include some disadvantages such as, the lackness of intimate contact between model and base, the lackness of retention during the jaw relation registration, When we obtained jaw relation the permanent record bases made from heat curing resin were utilized. We could get several advantages as follows : 1. The permanent record base provided intimate contact between the model and record base. 2. In fabricating occlusal rim on record base, the dimensional change of record base was little because the permanent record base was lesser influenced to thermal change of occlusal rim than the temporary record base. 3. At the stage of jaw relation, the retention of final denture could be early checked. 4. It could be able to get more accurate registration of jaw relation because all procedure were done on the same base during the jaw relation, artificial teeth arrangement, try-in, and final denture construction. 5. Although there was an inconvenience due to double curing procedure, the shrinkage rate in resin polimerization was relatively reduced so that more dimensional stability could be taken.

  • PDF

Study on Manufacturing Technology of Coating Yarns for Awning Fabrics (차양막 직물용 코팅사 제조기술에 관한 연구)

  • Kim, Seung-Jin;Lee, Eun-Ho;Heo, Kyeung;Kim, Hyun-Ah
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.35-49
    • /
    • 2015
  • This paper investigated optimum process conditions of coating yarn for awning fabric. For this purpose, the simulation for processability and yarn quality using SPSS statistics package was carried out, and PP/TPO and PET/PVC coating yarns specimens were made with variation of extruder temperature and feed speed of core yarn on the yarn coating machine for examining simulation result. It was revealed that optimum coating conditions of PP/TPO 1000d coating yarn were extruder temperature $150^{\circ}C$, and core yarn feed speed 400~500m/min. Mechanical property and thermal shrinkage of PP/TPO coating yarn made at this conditions were best and core evenness rates of these coating yarns by yarn compression tester were also superior, which was certified by SEM photograph. In addition, these experimental results were coincided with simulation results. It was found that, in PET/PVC coating yarn, yarn physical properties between 1500d and 1200d coated yarns were not shown any difference, and core evenness rates of these coating yarns were superior. It revealed and concluded that these simulated coating conditions are applicable to production field.

A Comparative Study on Thermal Efficiency Between the Present Floor and a Ceramic Floor (기존온돌과 세라믹구들의 열효율 비교 연구)

  • Kim, Young Man;Kim, Kyung Sung;Choi, Beom Suk;Ko, Jae Sik;Park, Seung Ku
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.166-170
    • /
    • 1999
  • A ceramic floor with improved thermal conductivity and efficiency has been developed in this study. The new ceramic floor minimizes the shrinkage rate to below 0.07% and shows almost no cleavage. There is no need to repaire the ceramic floor because its bottom surface is flat. It especially shows an excellent perfomance in the test of a compressive strength ($300kg/cm^2$ based on 28 days), a flexural strength ($64kg/cm^2$ based on 28 days), and a convenient pressing. It is lighter than the present floor and it is expected to be applicable for a self-leveling ceramic motar in the residences and apartments. It shows an excellent character in the thermal conductivity and other physical properties compare to the present cement mortar.

  • PDF

Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding (구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조)

  • Jeong, Hyeondeok;Kim, Seiki
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.502-507
    • /
    • 2019
  • Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Physical drying and frying characteristics of kimbugaks made by a pasting & garnishing machine (풀칠·고명기로 제조된 김부각의 물리적 건조 및 튀김 특성)

  • Yoo, Soo-Nam;Choi, Yeong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.439-446
    • /
    • 2015
  • Kimbugak is one of Korea's traditional snacks made of laver. This study was conducted to investigate the physical drying and frying characteristics of kimbugaks made by a pasting & garnishing machine. The drying and frying characteristics should be analyzed to develop a continuous operation system for manufacturing kimbugak because kimbugak has a high moisture content after pasting process. Materials for pasting and garnishing on laver were rice gruel and sesame. The aluminum shelf with square hole was selected as a drying shelf. The recommended size of the square hole type was $1.5mm{\times}1.5mm$ because characteristics of deformation and easy separation from the shelf were excellent at the hole size. The drying time of 2 hours was also recommended with the drying temperature of $70^{\circ}C$ based on the test results such as dried condition (good), moisture conten t (3.7%), deformation (12.1 mm), and shrinkage rate (19.8%). As the frying conditions for dried kimbugaks, recommended oil temperature and frying time were $170^{\circ}C$, 15 seconds, respectively when corn oil was used. In the case of frying for undried kimbugaks, recommended oil temperature and frying time were $210^{\circ}C$, 2 - 3 minutes, respectively for improvement of work efficiency.

Heat Treatment Effect on the Microstructure of 8YSZ Thick Film (열처리 온도에 따른 8YSZ 후막의 미세구조)

  • Han, Sang-Hoon;Noh, Hyo-Seop;Na, Dong-Myung;Jin, Guang-Hu;Lee, Woon-Young;Park, Jin-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.106-109
    • /
    • 2011
  • In order to fabricate 8YSZ thick film by silk screen printing, YSZ(yttria-stabilized zirconia) commercial powder was used as starting materials. Paste for screen printing was made by mixing 8YSZ powder and organic vehicles. 8YSZ thick film was formed on $Al_2O_3$ substrate. The crystal structure, and microstructure were investigated. Grain size of 8YSZ was increased with increasing calcination temperature and rapid grain growth was shown after calcination at $1300^{\circ}C$. Microstructure showed the mixture of large and small grain size after $1400^{\circ}C$ sintering. Shrinkage rate of 8YSZ thick film sintered at $1400^{\circ}C$ was more than 40%.