• Title/Summary/Keyword: shotcreting

Search Result 19, Processing Time 0.02 seconds

A Study on the Comparison and Analysis of Shotcrete Rebounds due to Acceleratiion (급결특성에 따른 숏크리트 리바운드의 비교분석 연구)

  • 신민호;김원일;전병승;임종성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.402-406
    • /
    • 1995
  • The purpose of this paper is to decrease shotcrete rebound losses and to produce economic effectiveness at the same time in construction. The mechanical properties and quick acceleration of various shoterete mixes were analyzed, which were intuenced by several accelerators and their amouts used. And the application and construction in the felds were evaluated. The shotcrete rebounds relied on the condition of construction rather than on the quality of materials, but it is found that the decreasing of the cost and time in shotcreting under the same condition was based on the rebounds which were affected by the accelerating capability of the accelerators. The application of the accelerator was limited by the condition of tunnel construction ; such as ground water, anti-corrosive, or anti-chemistry. It is important to choose a proper accelerator. Therefore, it is necessary that better accelerators which satisfly mechanical characteristics and economy are developed. Optimal working conditions should be announced to the workers and workers' skill be improved in the shotcrete construction feld as well.

  • PDF

An Experimental Study of Flexural Behavior for Fiber Reinforced Concrete Round Panel according to the Geometry (원형패널의 단면크기에 따른 섬유보강콘크리트의 인성변화에 관한 실험 연구)

  • 오병환;최승원;박대균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.629-634
    • /
    • 2003
  • The cement-based composites have relatively low tensile strength and toughness. The fiber addition is one of the most important ways of increasing the toughness of concrete. The steel fibers have been used conventionally in the shotcrete of tunnel lining. Recently, the structural synthetic fibers were developed and used frequently in some actual tunnel shotcreting in foreign countries. There are so many method to evaluate a toughness; ASTM, JCI, EFNARC, etc. But these methods contain a few defects. So most researchers are studying to develope a new toughness evaluation method. A RTA is one of these methods. The purpose of this study is to explore the strength and toughness characteristic of the fiber reinforced concrete panel according to the geometry; diameter, thickness. The result were compared with those of steel fiber reinforced concrete.

  • PDF

An Experimental Study on the Performance Evaluation of Structural Synthetic Fiber-Reinforced Shotcrete (구조용 합성섬유보강 숏크리트의 성능평가에 관한 실험연구)

  • 오병환;최승원;박대균;한일영;김방래;신용석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.373-378
    • /
    • 2003
  • The cement-based composites have relatively low tensile strength and toughness. The fiber addition is one of the most important ways of increasing the toughness of concrete. The steel fibers have been used conventionally in the shotcrete of tunnel lining. Recently, the structural synthetic fibers were developed and used frequently in some actual tunnel shotcreting in foreign countries. Now types of synthetic fibers have been developed in this study. The purpose of this study is to explore the strength and toughness characteristic of the concrete reinforced with synthetic fibers developed in this study. The result were compared with those of steel fiber reinforced concrete. It is seen that the performance of synthetic fiber reinforced concrete is good as much as that of steel fiber reinforced concrete, while the synthetic fibers have advantages in corrsion resistance and economy.

  • PDF

Evaluation of Durability Performance of Wet- Mixed Shotcrete with Powder Types Cement Mineral Accelerator (시멘트 광물계 급결제를 사용한 습식 숏크리트의 내구성 평가)

  • Won Jong-Pil;Sung Sang-Kyoung;Park Chan-Gi;Cho Yong-Jin;Choi Seok-Won;Park Hae-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.253-256
    • /
    • 2004
  • Recently, construction works of scale are getting larger with economic growth. Shotcreting is one of major processes in tunnels construction. Accelerator is used in tunnel and underground structures to ensure early strength of shotcrete. Silicate based accelerator and aluminate based accelerator is getting widely in the field. But these accelerators have many problems due to decesase of long-term strength and low quality of the hardened shotcrete. in order to solve these problems, recently developed powder types cement mineral accelerator. In this study, we tested chloride permeability, freezing and thawing and accelerated carbonation of shotcrete. As a result of the test, wet-mixed shotcrete with powder types cement mineral accelerator exhibited durability improvement compared to the conventional shotcrete accelerator.

  • PDF

Evaluation of the Structural Performance of Tetragonal Lattice Girders (사각 격자지보의 구조 성능 평가)

  • Kim, Seung-Jun;Han, Keum-Ho;Won, Deok-Hee;Baek, Jung-Sik;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.267-278
    • /
    • 2012
  • In general, the H-shaped steel ribs or triangular lattice girders have been mostly used in constructing tunnels through the NATM construction method. The H-shaped steel rib has higher flexural and axial strength than the triangular lattice girder, but many unexpected gaps can occur in the concrete lining system after shotcreting if the H-shaped steel rib is used as the support system. To achieve better shotcreting quality, the triangular lattice girder was developed. However, in general, the triangle lattice girder has low flexural and axial strength. Likewise, the triangular lattice girder, which has circular sectional members, has so many fractures from welded points at the joints between the members. Finally, the new type of tetragonal lattice girder was developed to overcome those problems. In this study, the structural performance of the tetragonal lattice girders was evaluated through analytical and experimental studies. In the analytical studies, the four-point bending analysis, the traditional evaluation method to determine the flexural strength of the lattice girder, was performed. Moreover, the linear-elastic analysis and stability analysis of the arch structure made by the lattice girders were performed to measure structural performance. Experiments were likewise performed to compare the structural performances of the tetragonal girder with traditional triangular lattice girders.

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Durability Assessment for Crushed Sand Wet-mix Shotcrete Mixed with Mineral Admixtures (부순모래를 사용한 습식 숏크리트의 광물성 혼화재료 혼입에 따른 내구성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.607-614
    • /
    • 2014
  • The purpose of this dissertation was to investigate the effect of mineral admixtures, such as fly ash, blast furnace slag powder, meta kaolin and silica fume, on the basic properties and durability of crushed sand shotcrete, selecting a series of shotcrete mixtures with a variable admixture. Compressive strength increased as the content of mineral admixtures increased, specially it was the most effective when using meta kaolin both at sample specimen and core after shotcreting. Rapid chloride ion permeability test and sulfuric acid resistance test showed that both durability increased as the substitute rate of mineral admixture increased. In air void analysis with image analysis, the targeted the spacing factor and specific surface were not satisfied because air-entrained agent was not used.

Effect of Types of Accelerators and Replacement Levels of GGBFS on the Performance of Shotcrete Mortars (숏크리트 모르타르의 성능에 대한 급결제 종류 및 고로슬래그 미분말 대체율의 영향)

  • Lee, Seung Tae;Kim, Seong Soo;Kim, Dong Gyu;Park, Kwang Pil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • In this study, some engineering properties of OPC and GGBFS shotcrete mortars with alkali-free or aluminate accelerator were experimentally examined. As a result, GGBFS mortars with alkali-free accelerator were significantly similar to OPC mortars with same accelerator with respect to both setting time and compressive strength. Comparatively, GGBFS mortars with aluminate accelerator showed a good performance with an increased replacement of GGBFS. Furthermore, when replaced with GGBFS over 50%, the mortars exhibited superior performances of electrical resistivity and chloride ions penetration resistance. Accordingly, it is suggested that GGBFS has a beneficial effect as shotcreting materials in the condition of proper replacement levels.

Evaluation of the Mechanical Properties of Field-Cast Shotcrete and Long-Term Durability by Combined Deterioration Test (현장타설 숏크리트의 역학적 성능 평가 및 복합열화시험을 통한 장기내구성 평가)

  • Ma, Sang-Joon;Jang, Phil-Sung;Kim, Dong-Min;Choi, Jae-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2007
  • Recently, tunnels are increasingly constructed in this country with the increased construction of highways, high-speed railways and subways. Shotcrete is one of the major processes in the tunnel construction. Many problems, however, exist in the current shotcrete practice. The purpose of the study is, therefore, to explore the trobles in the current shotcreting practice, and to develop high-quality silica fume shotcrete. For the purpose of security a long-term durability of shotcrete, this study conducted combined deterioration tests. In this study, a combined deterioration test in consideration of a variety of deterioration factors were proceeded. Especially, micro-silica fume that was used frequently in overseas because of a outstanding strength-promotion effect was applied to combined deterioration test, and a long-term durability of shotcrete was investigated according to additions mixing. As a result of test, the shotcrete mixed Micro-silica fume showed a good deterioration quality compared with the other mixes. And is shows that the Micro-silica fume has an outstanding strength-promotion effect and is effective to secure a long-term durability of shotcrete by means of decreasing a deterioration caused by steel fiber mixed.