• Title/Summary/Keyword: shotcrete

Search Result 399, Processing Time 0.026 seconds

Effect of Shotcrete Lining Adherence on Load Carrying Capacity of Lining (숏크라트 라이닝 층간 부착성이 라이닝의 하중지지력에 미치는 영향)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.41-51
    • /
    • 2006
  • This paper concerns the effect of lining interface adherence on the lining's load carrying capacity. A series of reduced scale laboratory tests and finite element anlayses were carried out with the aim of gaining insight into the effect of shotcrete lining adherence on the load carrying capacity of double shell lining. The results indicated among other things that the load carrying capacity of a double shell tunnel is significantly affected by the adherence between layers. Also revealed was that for cases with low lining layer adherence stress concentration may occur due to relative movement between the lining layers with this trend being more pronounced with increasing tunnel cover depth. Practical implications from the results of this study are discussed in great detail.

  • PDF

A study on pull-out behaviours of shotcrete steel fibers according to different shapes (숏크리트 강섬유 형상에 따른 인발 거동에 대한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.71-82
    • /
    • 2011
  • This paper presents the tensile strength of shotcrete steel fibers depending on the shape of steel fiber. The experimental and numerical analyses are performed in this study. In experimental study, a series of laboratory pullout tests are carried out by changing both the angle and the length of the embedded steel fiber according to the corresponding type of steel fiber in order to derive the optimal type of steel fiber. Results obtained from the experimental work are evaluated and compared with the numerical analysis results. The results clearly show that the pull-out strength of the steel fiber are increased with increasing the hook angle and embedded angle of steel fiber. It is also found that the pull-out strength of the steel fiber is larger in case of the short steel fiber body length.

Numerical Analysis for Shotcrete Lining at SCL Tunnel in NS2 Transmission Cable Tunnel Project in Singapore (싱가포르 케이블터널 프로젝트 NS2현장 SCL 터널에서의 숏크리트 라이닝의 변형거동 특성)

  • Kwang, Han Fook;Kim, Young Geun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2017
  • This technical paper is a study on the unique displacements of Shotcrete Lining at the mined tunnel during excavation period through deep consideration with real time data from monitoring instrumentations correlation with the numerical analysis to identify the rock stresses and the rock spring points at the working face of the Conventional tunnelling by the Drill and Blast, based on the geological face mapping results of the project NS2, Transmission cable tunnel project in Singapore. The created geometry of numerical model was prepared to the real mined tunnel construction site including, vertical shaft, construction adit, tunnel junction area, and 2 enlargement caverns. The convergence measurements by the monitoring instrumentation were performed during the tunnel excavation and shaft sinking construction stages to guarantee the safety of complicated underground structures.

A Study about efficient maintenance of large scale cut slope (대규모 절토사면의 효율적인 유지관리를 위한 연구)

  • Park, Jae-Young;Shin, Chang-Gun;Jung, Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1051-1056
    • /
    • 2009
  • Recently, there are many wide road in korea, so The Large scale cut slopes are increasing. Large scale cut slopes are better then small scale in case of construction and maintenance. General, Reinforced Slopes by Shotcrete are difficult to inspect because of stiff Slope and highly Working Area. So the Inspection Techniques are needed by the Non-contact and Non-destructive. On this Study, We are studying the method about efficient valuation and maintenance of Large scale Reinforced slopes by Shotcrete.

  • PDF

Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance

  • Vandoros, Konstantinos G.;Dritsos, Stephanos E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.43-61
    • /
    • 2006
  • An investigation of the effectiveness of the interface treatment when column concrete jacketing is performed is presented. Alternative methods of interface connection were used in order to investigate the performance of strengthened concrete columns. These connecting techniques involved roughening the surface of the original column, embedding steel dowels into the original column and a combination of these two techniques. The experimental program included three strengthened specimens, one original specimen (unstrengthened) and one as-built specimen (monolithic). The specimens represented half height full-scale old Greek Code (1950's) designed ground floor columns of a typical concrete frame building. The jackets of the strengthened specimens were constructed with shotcrete. All specimens were subjected to displacement controlled earthquake simulation loading. The seismic performance of the strengthened specimens is compared to both the original and the monolithic specimens. The comparison was performed in terms of strength, stiffness and hysteretic response. The results demonstrate the effectiveness of the strengthening methods and indicate that the proper construction of a jacket can improve the behaviour of the specimens up to a level comparable to monolithic behaviour. It was found that different methods of interface treatment could influence the failure mechanism and the crack patterns of the specimens. It was also found that the specimen that combined roughening with dowel placement performed the best and all strengthened columns were better at dissipating energy than the monolithic specimen.

A Study on Properties of High Blaine Slag Cement for Shotcrete (숏크리트용 고분말도 슬래그 시멘트의 특성)

  • Kim, Jae-Young;Yum, Soo-Kyung;Yoo, Dong-Woo;Choi, Hyun-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.357-364
    • /
    • 2010
  • This study was performed to get basic information about properties of high blaine slag cement(HSC) to use shotcrete(or sprayed concrete and mortar). Particle size distribution, setting time and compressive strength test, analysis like as SEM, DSC thermal analysis, XRD was carried out to investigate principle properties of HSC. Setting time of HSC was delayed slightly, but influence of accelerators was more bigger than ordinary portland cement(OPC). Compressive strength of HSC at 28 days was more higher than OPC regardless of using accelerators. Results of analysis showed early period hydration products of HSC is more small and located widely, because of the interface of between cement particle and water is increased as specific surface of cement increase. From the SEM observation and analysis of DSC and XRD results, aluminates accelerators bring on some hydration products like as calcium aluminium hydrates, alkali free accelerators increases ettringite and monosulfates. Aluminates accelerators has a advantage of setting time and early strength, alkali free accelerators increases strength after 7 days.

Permanent Support for Tunnels using NMT

  • Barton, Nick
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.1-26
    • /
    • 1995
  • Key aspects of the Norwegian Method of Tunnelling (NMT) are reviewed. These include a predictive method of support design using the six-parameter Q-system of rock mass characterisation. The rock mass rating or Q-value is updated during tunnel driving. The designed tunnel support generally consists of wet process, steel fibre reinforced shotcrete combined with fully grouted, untensioned rock bolts, Even in poor rock conditions S(fr) + B usually acts as the final rock reinforcement and tunnel lining. Since it is a drained lining, it is very economic compared to cast concrete with membranes. Light, free-standing steel liners are used to prevent water affecting the runnel environment. Rock mass conditions, and hence lining design and cost estimation can be assessed by careful use of seismic surveys. Relationships between the P-wave velocity, the rock mass deformation modulus and the Q-value have recently been established, where tunnel depth, rock porosity and the uniaxial compression strength of the rock are important variables. The rock mass modulus estimate, and simple index testing of the joints, provide the key input which joints are discretely represented (either in two dimensions with the UDEC code or in three dimensions with the 3DEC code) is generally favoured compared to continuum analysis. The latter may give a misleading impression of uniformity and deformations tend to be understimated. Q-system NMT designs of S(fr) + B (fibre reinforced shotcrete and bolting) are numerically checked and adjustments made to bolt capacities and shotcrete thickness if overloading is evident around the modelled profile.

  • PDF

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

Influences of Slag Replacement on the Properties of Shotcrete Using a Slurry-Type Set Accelerator (슬래그 혼입량이 슬러리형 급결제를 활용한 숏크리트 몰탈의 물성에 미치는 영향)

  • Kim, Hyunwook;Moon, Hoon;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.389-396
    • /
    • 2014
  • The set accelerator used for shotcrete at high pH environment often causes the dusting problem in practice. In this research, a slurry-type set accelerator was developed to avoid this problem and its effectiveness was investigated by applying it to shotcrete mortars. Set time, stiffening, compressive strength, and chloride ion penetration resistance were examined with different amounts of slag, used as partial replacement of cement. According to the experimental results, it was found that the earlier responses such as set time, stiffening, and 1-day compressive strength were probably affected by the amount of ettringite, formulated by the hydration between C12A7 and calcium sulfate polymorphs present in blast furnace slag. Whereas, it is believed that the result of compressive strength after 3 days was attributed to the hydration of tricalcium silicates. As for the results of a chloride ion penetration test, the partial replacement of cement with slag significantly reduced the total charge passed through the shotcrete mortar.

Development of Accelerator Control System for Wet Shotcrete Spraying Equipment (습식 숏크리트 뿜칠 장비의 급결제 유량 제어 시스템 개발)

  • Tae-Ho, Kang;Soo-Ho, Chang;Soon-Wook, Choi;Jin-Tae, Kim;Bong-Gyu, Kim;Chulho, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • The wet shotcrete refers to a method in which all materials are mixed and then supplied to the spraying device, compressed air is added to the nozzle, and the spraying speed is improved to spray on the target surface. In order to reproduce the amount of shotcrete used in the wet method in the field and the situation at the laboratory scale, it is essential to control the discharge amount of the equipment. In this study, in order to increase the reproducibility of field conditions at the laboratory scale, a flow control system for shotcrete mortar spraying equipment was developed and applied to the equipment. To verify the developed equipment, a discharge control test using water and mortar was performed. In the developed control system, the discharge was smoothly controlled according to the user input value for the mono pump, but the discharge was not properly controlled according to the input value for the screw pump because of a reducer. When a speed reducer is attached, it is necessary to adjust the operation rate of the screw pump close to the target flow rate by increasing the operation rate of the screw pump while lowering the operation rate of the mono pump.