• Title/Summary/Keyword: shot-by-shot

Search Result 1,014, Processing Time 0.026 seconds

A Study on the Effect of the Shot Peening in SCM420H Planetary Gear (SCM420H 유성기어의 쇼트피닝 효과에 관한 연구)

  • Ahn, In-Hyo;Ahn, Min-Ju;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • This study deals with the effect of the shot peening in SCM420H planetary gears. The hardness and roughness of the gear surface can be improved by shot blast and shot peening. there in, the shot peening techniques are welcomed especially as one of the physical surface improvement methods. The two treatments are used widely, because of the qualitative analysis of shot blast and shot peening has become possible and the surface treatment can be done with little costs compared with other surface improvement methods. Therefore, this study investigates the effects of shot blast and shot peening in surface shape. The fatigue strength test at a constant stress amplitude is performed by using an electrohydraulic serve-controlled pulsating tester. And fatigue test also explained characteristics of shot blast and shot peening of planetary gears.

The Improvement of Fatigue Properties by 2-step Shot Peening (2단쇼트피닝에 의한 피로특성의 향상)

  • 이승호;심동석
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.475-479
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, tests are conducted on spring steel and shot peened specimens. Various tests are accomplished to evaluate mechanical properties influenced by shot peening process, and fatigue tests are also performed to evaluate the improvement of fatigue strength. And then the residual stresses are examined. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength of notched specimen remarkably increased. In the case of 1-step shot peening, fatigue strength increased by about 20% than unpeened specimen. Especially, in the case of 2-step shot peening, fatigue strength increased by about 40%, because the residual compressive stress at surface was higher than that of 1-step shot peened specimen. The fatigue strength and life are closely related to the value and position of maximum compressive residual stress by shot peening.

Shot Boundary Detection Algorithm using Multi-Pass Mechanism (Multi-Pass 구조를 가지는 Shot 경계 검출기법)

  • Seong Changwoo;Kang Dae-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.58-63
    • /
    • 2000
  • This paper describes an efficient algorithm for shot boundary detection in MPEG video stream. There are two types of shot boundary: abrupt and gradual. The proposed algorithm for detecting the abrupt shot boundaries used DCT DC value in compressed domain. The proposed algorithm of the gradual change detection consists of two-pass mechanism. In the first pass, the expected positions of shot boundaries are extracted using ratio value of motion vectors. After decoding frames that are extracted in the first pass, we will make the dissolving image using (n)th and (n+2)th image of expected position. The gradual shot boundaries are selected by similarity of the dissolving image and the image of (n+1)th expected position. As applying the algorithm for detecting shot boundaries, the gradual changes as well as the abrupt changes are detected efficiently. Experimental results indicate that the proposed method is computationally fast for detecting shot boundaries and robust to the variation of the video characteristic that is different for the kind of videos.

  • PDF

Effect of Shot Peening on Fatigue Life of Heat Treated Spring Steel (열처리된 스프링강의 피로수명 개선을 위한 쇼트피닝 가공 효과)

  • Lee, Seung-Ho;Shim, Dong-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.336-341
    • /
    • 2004
  • The effect of shot peening conditions on the fatigue properties of heat-treated spring steel has been investigated by using residual stress measurement and metallography. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength and fatigue life increased about 20% to 40% by 1-step and 2-step shot peening process. The fatigue strength and life were closely related to the value and position of maximum compressive residual stress by shot peening process. In the case of warm shot peening, compressive residual stress of specimens shot peening processed at $200^{\circ}C$ was higher than those of specimens shot peening processed at room temperature, $100^{\circ}C$ and $300^{\circ}C$.

A 2D FE Model for a Unique Residual Stress in Single Shot Impact (단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF

Kinematical Differences of the Male Professional Golfers' 30 Yard Chip Shot and Pitch Shot Motion (남자프로골퍼의 30 야드 칩샷과 피치샷 동작의 운동학적 차이)

  • Pyun, Eun-Kyung;Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.177-185
    • /
    • 2007
  • Even though there were no clear definitions of the short game and short game distance, short game capability is crucial for a good golf score. Generally, chip shot and pitch shot are regarded as two principal components of the short game. Chip shot is a short, low trajectory shot played to the green or from trouble back into play. Pitch shot is a high trajectory shot of short length. Biomechanical studies were conducted usually to analyze full swing and putting motions. The purpose of the study was to reveal the kinematical differences between professional golfers' 30 yard $53^{\circ}wedge$ chip shot and $56^{\circ}wedge$ pitch shot motions. Fifteen male professional golfers were recruited for the study. Kinematical data were collected by the 60 Hz three-dimensional motion analysis system. Statistical comparisons were made by paired t-test, ANOVA, and Duncan of the SPSS 12.0K with the $\alpha$ value of .05. Results show that both the left hand and the ball were placed left of the center of the left and right foot at address. The left hand position of the chip shot was significantly left side of that of the pitch shot. But the ball position of the pitch shot was significantly right side of that of the chip shot. All body segments aligned to the left of the target line, open, at address. Except shoulder, there were no significant pelvis, knee, and feet alignment differences between chip shot and pitch shot. These differences at address seem for the ball height control. Pitch shot swing motions(the shoulder and pelvis rotation and the club head travel distance) were significantly bigger than those of the chip shot. Club head velocity of the pitch shot was significantly faster than that of the chip shot at the moment of impact. This was for the same shot length control with different lofted clubs. Swing motion differences seem mainly caused by the same shot length control with different ball height control.

Advanced Shot Boundary Detection Algorithm by Gradual Transition (점진적 장면 변화 검출을 위한 개선된 Shot 경계 검출기법)

  • 성창우;강대성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.249-252
    • /
    • 2000
  • 본 논문에서는 MPEG으로 압축된 영상에 대해서 급격한 장면 변화에 의한 shot 경계(cut)와 점진적 장면 변화에 의한 shot 경계(dissolve)를 검출하여 비디오 shot을 분할하는 기법을 제안한다. 기존의 방법으로 잘 검출하지 못하였던 점진적 장면 변화에 의한 shot의 경계를 검출하기 위한 기법을 제안한다. 먼저 압축영역의 기법 중 DCT DC 값을 비교하는 방법을 이용하여 cut에 의한 shot 경계를 검출한다 그리고 움직임 벡터(MV)의 비를 비교하는 방법을 사용하여 dissolve에 의한 shot 경계의 후보지들을 얻어내고, 선택된 후보지들 중 n번째와 n+2번째 후보지 영상으로 dissolve 영상을 만들어 n+1번째 후보지의 영상과 유사도를 비교하여 dissolve를 검출한다. 이와 같이 압축영역에서 cut에 의한 shot 경계와 dissolve에 의한 shot 경계의 후보지를 검출해 내고, 검출된 shot 경계 후보지들에서 dissolve에 의한 shot 경계를 검출하는 방법을 함으로서 MPEG 비디오 영상의 복원량을 최소화하여 수행 속도를 높이면서도 cut과 dissolve 두 가지 모두를 효과적으로 검출할 수 있었다.

  • PDF

An Effect of Warm Shot Peening on the Fatigue Behavior of Suspension Coil Springs (현가장치용 코일스프링의 피로특성에 미치는 온간쇼트피닝 가공의 영향)

  • Kim, Ki-Jeon;Chung, Suk-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1209-1216
    • /
    • 2002
  • The requirements of coil spring fer higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increase in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. The warm shot peening is a shot peening treatment carried out within warm temperature range. The aim of this paper is to analyze some experimental results concerned with the effect of warm shot peening and to discuss the mechanism of warm shot peening in detail. By the results of rotating bending fatigue test, the fatigue strength of test specimen increases up to 23.8% in the production condition of warm shot peening at 200$\^{C}$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increase of a compressive residual stress distribution, which can be caused by more effective deformation under the condition of warm temperature.

Effect of the Peening Intensity by Shot Peening (쇼트피닝 가공조건이 피닝강도에 미치는 영향)

  • Jeong, Seong-Gyun;Lee, Seung-Ho;Jeong, Seok-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1590-1596
    • /
    • 2001
  • The shot peening process is most often used to improve fatigue properties of metal parts. The single most critical parameter of the shot peening process is the shot ball itself. Without the correct quality media, all other shut peening parameters are extraneous and the desired fatigue improvement and consistency of improvement will not be achieved. Shot peening involves modifications of the surface and subsurface condition of a material that can be described by the change of the residual stresses, the hardness, and the surface roughness. This Paper Presents the shot peening to optimize the shot ball parameters. The effect of shot peening parameter on the surface roughness, surface hardness and residual stress are investigated.

The Improvement of Compressive Residual Stress by Warm Shot Peening (온간 쇼트피닝에 의한 압축잔류응력의 변화)

  • Lee Seung-Ho;Shim Dong-Suk;Kim Gi-Jeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.273-278
    • /
    • 2004
  • The requirements of getting spring steel with higher fatigue strength have been increased to achieve the weight reduction of a vehicle. As the possible increment in fatigue strength by using the conventional shot peening treatment is found to be limited, it is necessary to modify the shot peening treatment. In this study, to investigate the effects of warm shot peening on increasing fatigue strength, tests are conducted on spring steel SAE9524. By the results of rotating bending fatigue tests, the fatigue strength increases up to 23.8% in warm shot peening specimens at $200^{\circ}C$ compared with conventional shot peening. The major reason why the warm shot peening is effective to the improvement of fatigue strength is the increment of the compressive residual stress, which can be effectively formed by shot peening under the condition of warm temperature than room temperature.