• 제목/요약/키워드: shot peened

검색결과 72건 처리시간 0.017초

$3.5\%$ NaCl수용액에서 SAE 5155의 부식거동에 미치는 쇼트피닝의 영향 (The Effect of Shot Peening on Corrosive Behavior of SAE 5155 in $3.5\%$ NaCl Solution)

  • 안재필;박경동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.692-700
    • /
    • 2005
  • In this study. investigated the effect of shot peening on the corrosion of SAE 5155 steel immersed in $3.5\%$ NaCl solution and corrosion characteristics by the heat treatment during shot peening process. The immersion test was Performed on the four kinds of specimens. Corrosion Potential, polarization curve, residual stress etc. were investigated from experimental results. From these test results, the effect of shot peening on the corrosion was evaluated The important results of the experimental study on the effects of shot peened SAE 5155 on the corrosion are as follows; Shot peened specimens show the low of corrosion current as compared with un peened specimens. In the case of corrosion potential, shot Peened specimen shows more negative Potential as compared with that of parent metal Surface of specimen, which is treated with shot peening Process. is Placed as more activated state against inner parent metal. Corrosion rate is shown that shot Peened specimens have less corrode than un peened specimens. But non heat treated shot peened specimens show the biggest weight loss owing to variable compressive residual stress layer by shot ball.

현가장치재의 피로수명향상 공법개발에 관한 연구 (A Study of Development Methods of Fatigue Life Improvement for the Suspension Material)

  • 박경동;정찬기
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

현가장치재 스프링강의 부식피로특성에 미치는 쇼트피닝 가공효과 (The Effect of Shot peening for Corrosion Fatigue Characteristics of Spring Steel Using as Suspension Material)

  • 박경동;이주영;기우태;신영진
    • 한국기계가공학회지
    • /
    • 제6권1호
    • /
    • pp.62-70
    • /
    • 2007
  • The development of new materials that are light-weight, yet high in strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. The fatigue crack growth rate of the Shot-peened material was lower than that of the Un-peened material. And in stage I, threshold stress intensity factor of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. And Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

쇼트피이닝한 부재의 피로수명 예측 및 피로강도 평가 (Fatigue Life Prediction and Strength Evaluation of Shot Peened Parts)

  • 김환두;이순복
    • 한국기계연구소 소보
    • /
    • 통권15호
    • /
    • pp.75-87
    • /
    • 1985
  • A review was performed on fatigue life prediction and strength evaluation of shot peened parts. Fatigue strength of machine parts can be improved by shot peening due to compressive residual stresses on such parts. Compressive residual stress cannot be uniquely define by peening intensity. Several measuring methods of residual stress and the principle of hole drilling method are presented. Exploratory measurement of residual stress was performed on the shot peened SM35C plate with the hole drilling method. Fatigue life and failure location of shot peened parts under bending load can be predicted by a damage parameter which is incorporated with material properties, residual stress, and applied stress conditions. Some method are presented to predict the fatigue strength of shot peened parts at any given life. Shot peening gives its full benefit to the notched machine parts of high strength steels.

  • PDF

해양구조용강의 피로크랙진전특성에 미치는 쇼트피닝 투사속도의 영향 (A Study on the Effect of Shot Velocity by Shot Peening on fatigue Crack Growth Property for Marine Structural Steel)

  • 박경동;노영석
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.47-53
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require such expensive tools, as well as a great deal of time and effort. Therefore, the improvement of fatigue life through, the adoption of residual stress, is the main focus. The compressive residual stress was imposed on the surface according to each shot velocity(1800, 2200, 2600, 3000rpm) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methose mentioned above, we arrived at the following conclusions; 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. In stage I, $\Delta$K$_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts, unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. Compressive residual stress of the surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

해양구조용강의 피로거동에 관한 연구 (A Study on Shot peening on Fatigue Crack Growth Property for Marine Structural Steel)

  • 박경동;하경준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.313-318
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue lift: and strength. By using the methods mentioned above, I arrived at the following conclusions 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF

균열진전에 대한 쇼트피닝 효과 (Effect of Shot-peening on Fatigue Crack Growth)

  • 심동석;이승호;이명호
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.91-95
    • /
    • 2004
  • In this study, to investigate the effects of shot peening on crack growth behavior, crack growth tests are conducted on spring steels and shot peened cracks. The probabilistic crack growth equation, which can represemt the sigmoidal crack growth behavior as recently reported by Kim and Shim, is used to evaluate the experimental results. The results show that fatigue cracks grows slower in the shot peened specimen than in the unpeened and, due to the compressive residual stress occurring on the specimen surface. In the case of the shot peened specimen, the initial stress intensity factor range and the fracture toughness is higher than the non-peened specimen because the compressive residual stress affects crack growth and fracture of the specimen.

Shot-peening 표면처리된 Ti 함유 스테인리스강의 응력균열부식 (Stress Corrosion Cracking Characteristics of Shot-peened Stainless Steel Containing Ti)

  • 최한철
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.350-359
    • /
    • 2004
  • Stress corrosion cracking(SCC) characteristics of shot-peened stainless steel containing Ti (0.09 wt%-0.92 wt%) fabricated by the vacuum furnace were investigated using SCC tester and potentiostat. The homogenization and the sensitization treatment were carried out at $1050^{\circ}C$ for 1hr and $650^{\circ}C$ for 5 hr. The samples for SCC were shot-peened using $\Phi$0.6 mm steel ball for 4 min and 10 min. Intergranular and pitting corrosion characteristics were investigated by using EPR and CPPT. SCC test was carried out at the condition of$ 288^{\circ}C$, 90 kgf pressure, water with 8 ppm dissolved oxygen, and $8.3xl0^{-7}$/s strain rate. After the corrosion and see test, the surface of the tested specimen was observed by the optical microscope, TEM and SEM. Specimen with Ti/C ratio of 6.14 showed high tensile strength at the sensitization treatment. The tensile strength decreased with the increase of the Ti/C ratio. Pitting and intergranular corrosion resistance increased with the increase of Ti/C ratio. Stress corrosion cracking strength of shot-peened specimen was higher than that of non shot- peened specimen. Stress corrosion cracking strength decreased with the increase of the Ti/C ratio.

선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향 (A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application)

  • 유형주;박경동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.

ALBC3 합금의 해수 내 전기화학적 특성에 미치는 쇼트피닝 분사압력의 영향 (Effects of Shot Peening Projection Pressure on Electrochemical Characteristics of ALBC3 Alloy in Seawater)

  • 한민수;임명환;김성종
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.25-32
    • /
    • 2014
  • The effects of shot peening pressure on electrochemical and surface morphological characteristics of ALBC3 alloy were investigated in this work. The surface hardness of ALBC3 alloy was improved by shot peening process under all shot peening pressures between 2 and 5 bar, and the hight value of surface hardness was observed to be about 420 Hv at 4 bar of the shot peening pressure. The shot peened surface presented very rough surface due to shot ball collision. The result of anodic potentiodynamic polarization in seawater revealed that there is no significant difference between the shot peened and non-shot peened specimen in terms of corrosion characteristics. Therefore, the optimum projection pressure is determined to be 4 bar.