• Title/Summary/Keyword: shortening

Search Result 1,601, Processing Time 0.035 seconds

Variations of Column Shortening with Parameters (매개변수에 따른 기둥축소량 변화에 관한 연구)

  • 정은호;김형래
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.

Quality Characteristics of Cookies Different with Various Fat (유지의 종류에 따른 쿠키의 품질 특성)

  • Yoo, Seung-Seok;Jeong, Hyun-Chul
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.6
    • /
    • pp.905-910
    • /
    • 2011
  • Cookies were prepared using different fat: butter, margarine, and shortening. Density, specific gravity of the dough, moisture content, spreadability, color, texture, and sensory evaluation for each cookies were conducted. Density, specific gravity and moisture content of each cookies showed the highest value with butter dough, and the lowest value with shortening dough. Spreadability of the cookie with margarine was the highest, and the cookie with butter and shortening resulted lower than that. The chromaticity 'L' and 'b' with butter cookie appeared the highest value, and margarine cookie and shortening cookie were followed that result. But chromaticity 'a' of butter cookie showed the lowest result while margarine cookie, and shortening cookie showed the highest value. Overall sensory evaluation showed high preference for butter cookie, beside margarine cookie and shortening cookie showed lower preference. Butter cookie was preferred in hardness, brittleness, color and chewiness, over margarine or shortening cookie. Flavor and sweetness with margarine cookie was preferred rather than butter cookie and shortening cookie. Softness and fatty taste of shortening cookie showed the highest result, beside margarine cookie and butter cookie showed lower result.

A Comparison of Shortening and Shortening Speed in Sartorius, Gastrocnemius and Rectus Abdominis Muscles of Uromastix hardwickii

  • Fehmeena, S.;Azeem, M. Abdul
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.61-70
    • /
    • 1994
  • A new method is used to record the actual shortening produced during the auxotonic activity of the sartorius (SAR), gastrocnemius (CAS) and rectus abdominis (RAB) muscles of a lizard Uromastix. The auxotonic twitch and tetanus records thus obtained were used for the first time to calculate the coefficient of linear shortening (COLS). This coefficient represent the relative Index between change in length $(\Delta\;L=L_0-L_1)$ and tension $({\Delta}P\;P_0-P_1)$ due to shortening at the steepest rising phase of the twitch and tetanus, recorded at resting length. In addition to this, maximum shortening $(S_{max})$ and auxotonic tensions were also determined at resting lengths of these muscles. The COLS was found to express the speed of shortening and auxotonic tensions are suggested to be of value to express the internal architecture of SAR, GAS & RAB muscles. The results are discussed in terms of contractile and elastic elements of the muscles alongwith the importance of shortening at resting lengths in skeletal muscles.

  • PDF

Effect of Outriggers on Differential Column Shortening in Tall Buildings

  • Kim, Han-Soo
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • Special consideration should be given to differential column shortening during the design and construction of a tall building to mitigate the adverse effects caused by such shortening. The effects of the outrigger - which is conventionally used to increase the lateral stiffness of a tall building - on the differential shortening are investigated in this study. Three analysis models, a constant-section, constant-stress, and general model, are prepared, and the differential shortenings of these models with and without the outrigger are compared. The effects of connection time, sectional area, and location of the outrigger on the differential shortening are studied. The sectional area of the outrigger shows a non-linear relation in reducing the maximum differential shortening. The optimum locations of the single and dual outriggers are investigated by an exhaustive search method, and it is confirmed that a global optimum location exists. This study shows that the outrigger can be utilized to reduce the differential shortening between the interior core wall and the perimeter columns as well as to reduce the lateral displacements due to wind or earthquake loads.

A Column Shortening on High-Rise Building and Structural Effect under seismic load (초고층 건물의 기둥축소와 지진하중에 대한 구조적 영향)

  • 정은호;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.59-68
    • /
    • 1997
  • The necessity of a high-rise building in big cities gave a new problem to structural engineers. The shortening effect of vertical members needs special considerstion in the desigh and construction of high-rise buildings. The shortening of each column transfers load to nonstructural members such as partitions, cladding, and M/E systems which are not designed to carry gravity loads. Also, the slabs and beams will tilt due to the cumulative differential shortening of adjacent vertical members. The main purpose of estimating the total shortening of vertical structural members is to compensate the differential shortening between adjacent members. This paper presents the structural effect of differential shortening between in main structural members. Lateral earthquake load is applied to the 52 story concrete structure which has an initial vertical displacement due to the gravity load. Shortening amount for each vertical member was estimated using the computerized column shortening software. Comparison of stresses between the shortening corrected structure and the uncorrecated structure due to earthquake load was discussed.

  • PDF

Effects of Reusing Times on the Oxidative Stability of Frying Fat for Frozen Battered Pork (냉동탕수육의 튀김횟수에 따른 튀김유지와 산화안정성)

  • 이현규;이주영;송은승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.2
    • /
    • pp.231-234
    • /
    • 2000
  • To evaluate the effect of frying times on the oxidative stability of soybean oil and shortening, they were reused up to 10 times and measured by thiobarbituric acid(TBA) value, acid value(AV), peroxide value(POV) and sensory evaluation. As the reusing time was increased, TBA value of "battered pork" fried with shortening showed more sharply increased than that with soybean oil, while the value of shortening, itself, showed more decreased than that of soybean oil. In frying fat, AV and POV increased with the increase of reusing times. Compared with soybean oil, shortening had rapidly increased for POV as reusing time was increased. Among the sensory analyses TBA of "battered pork" with soybean oil and shortening exhibited the highest correlation with flavor and texture, respectively. For the "batgtered pork" fried with soybean oil and shortening, reusing shelf-lives predicted were approximately 9 and 8 times, respectively.

  • PDF

Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings

  • B-Jahromi, Ali;Rotimi, Abdulazeez;Tovi, Shivan;Goodchild, Charles;Rizzuto, Joseph
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • The phenomenon of concrete column shortening has been widely acknowledged since it first became apparent in the 1960s. Axial column shortening is due to the combined effect of elastic and inelastic deformations, shrinkage and creep. This study aims to investigate the effects of ambient temperature, relative humidity, cement hardening speed and aggregate type on concrete column shortening. The investigation was conducted using a column shortening prediction model which is underpinned by the Eurocode 2. Critical analysis and evaluation of the results showed that the concrete aggregate types used in the concrete have significant impact on column shortening. Generally, aggregates with higher moduli of elasticity hold the best results in terms of shortening. Cement type used is another significant factor, as using slow hardening cement gives better results compared to rapid hardening cement. This study also showed that environmental factors, namely, ambient temperature and relative humidity have less impact on column shortening.

Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building (37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법)

  • Song, Hwa-Cheol;Do,e Guen-Young;Cho, Hun-hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.

Column Shortening prediction and Field measurement of Tall building with Transfer floor (전이층을 가진 초고층건물의 기둥축소량 예측 및 현장계측)

  • Song Hwa-Cheol;Cho Yong-Soo;Chung Sung-Jin;Yoon Kwang-Sup;Lee Woo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.175-181
    • /
    • 2006
  • The prediction of time-dependent column shortening is essential for tall buildings considering both strength and serviceability aspects. The Column shortening of tall buildings with transfer floor should be calculated considering the long-term deflection of transfer girder. In this study, both the column shortening and the deflection of transfer girder of 45-story tall concrete building are predicted. The column shortening considering deflection of transfer girder are compared with the actual column shortening by field measurement.

  • PDF

A Structural Engineer's Approach to Differential Vertical Shortening in Tall Buildings

  • Matar, Sami S.;Faschan, William J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • Vertical shortening in tall buildings would be of little concern if all vertical elements shortened evenly. However, vertical elements such as walls and columns may shorten different amounts due to different service axial stress levels. With height, the differential shortening may become significant and impact the strength design and serviceability of the building. Sometimes column transfers or other vertical structural irregularities may cause differential shortening. If differential shortening is not addressed properly, it can impact the serviceability of the building. This paper takes the perspective of a structural engineer in planning the design, predicting the shortening and its effects, and communicating the information to the contractor.