• Title/Summary/Keyword: short-term rainfall forecasting

Search Result 43, Processing Time 0.032 seconds

Dam Inflow Forecasting for Short Term Flood Based on Neural Networks in Nakdong River Basin (신경망을 이용한 낙동강 유역 홍수기 댐유입량 예측)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.67-75
    • /
    • 2004
  • In this study, real-time forecasting model(Neural Dam Inflow Forecasting Model; NDIFM) based on neural network to predict the dam inflow which is occurred by flood runoff is developed and applied to check its availability for the operation of multi-purpose reservoir Developed model Is applied to predict the flood Inflow on dam Nam-Gang in Nak-dong river basin where the rate of flood control dependent on reservoir operation is high. The input data for this model are average rainfall data composed of mean areal rainfall of upstream basin from dam location, observed inflow data, and predicted inflow data. As a result of the simulation for flood inflow forecasting, it is found that NDIFM-I is the best predictive model for real-time operation. In addition, the results of forecasting used on NDIFM-II and NDIFM-III are not bad and these models showed wide range of applicability for real-time forecasting. Consequently, if the quality of observed hydrological data is improved, it is expected that the neural network model which is black-box model can be utilized for real-time flood forecasting rather than conceptual models of which physical parameter is complex.

Development of Flow Forecasting System in Large Drainage Basin (대유역의 유량예측 시스템 개발에 관한 연구)

  • 배덕효
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.123-132
    • /
    • 1995
  • The subject research attempts to develop a hydrologic-hydraulic forecasting system suitable for use in large river basins. A conceptual hydrologic rainfall-runoff model is used to produce streamflow from meteorological and hydrologic input data over each subbasin, while a hydraulic model is used to route the catchment outflows in the stream network. For operational flow prediction, an efficient state estimator has been designed for the real-time updating of model states from newly recorded data. The real-time application of the forecasting system indicates that this model produces reliable short-term predicted results.

  • PDF

Short Term Drought Forecasting using Seasonal ARIMA Model Based on SPI and SDI - For Chungju Dam and Boryeong Dam Watersheds - (SPI 및 SDI 기반의 Seasonal ARIMA 모형을 활용한 가뭄예측 - 충주댐, 보령댐 유역을 대상으로 -)

  • Yoon, Yeongsun;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.61-74
    • /
    • 2019
  • In this study, the SPI (Standardized Precipitation Index) of meteorological drought and SDI (Streamflow Drought Index) of hydrological drought for 1, 3, 6, 9, and 12 months duration were estimated to analyse the characteristics of drought using rainfall and dam inflow data for Chungju dam ($6,661.8km^2$) with 31 years (1986-2016) and Boryeong dam ($163.6km^2$) watershed with 19 years (1998-2016) respectively. Using the estimated SPI and SDI, the drought forecasting was conducted using seasonal autoregressive integrated moving average (SARIMA) model for the 5 durations. For 2016 drought, the SARIMA had a good results for 3 and 6 months. For the 3 months SARIMA forecasting of SPI and SDI, the correlation coefficient of SPI3, SPI6, SPI12, SDI1, and SDI6 at Chungju Dam showed 0.960, 0.990, 0.999, 0.868, and 0.846, respectively. Also, for same duration forecasting of SPI and SDI at Boryeong Dam, the correlation coefficient of SPI3, SPI6, SDI3, SDI6, and SDI12 showed 0.999, 0.994, 0.999, 0.880, and 0.992, respectively. The SARIMA model showed the possibility to provide the future short-term SPI meteorological drought and the resulting SDI hydrological drought.

A Short-term Forecasting of Water Supply Demands by the Transfer Function Model (Transfer Function 모형을 이용한 수도물 수요의 단기예측)

  • Lee, Jae-Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.88-103
    • /
    • 1996
  • The objective of this study is to develop stochastic and deterministic models which could be used to synthesize water application time series. Adaptive models using mulitivariate ARIMA(Transfer Function Model) are developed for daily urban water use forecasting. The model considers several variables on which water demands is dependent. The dynamic response of water demands to several factors(e.g. weekday, average temperature, minimum temperature, maximum temperature, humidity, cloudiness, rainfall) are characterized in the model by transfer functions. Daily water use data of Kumi city in 1992 are employed for model parameter estimation. Meteorological data of Seonsan station are utilized to input variables because Kumi has no records about the meteorological factor data.To determine the main factors influencing water use, autocorrelogram and cross correlogram analysis are performed. Through the identification, parameter estimation, and diagnostic checking of tentative model, final transfer function models by each month are established. The simulation output by transfer function models are compared to a historical data and shows the good agreement.

  • PDF

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network (신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구)

  • Kim, Mi Eun;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.697-706
    • /
    • 2013
  • In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

River Water Level Prediction Method based on LSTM Neural Network

  • Le, Xuan Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.147-147
    • /
    • 2018
  • In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.

  • PDF

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

Determination of Unit Hydrograph for the Hydrological Modelling of Long-term Run-off in the Major River Systems in Korea (장기유출의 수문적 모형개발을 위한 주요 수계별 단위도 유도)

  • 엄병현;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.4
    • /
    • pp.52-65
    • /
    • 1984
  • In general precise estimation of hourly of daily distribution of the long-term run-off should be very important in a design of source of irrigation. However, there have not been a satisfying method for forecasting of stationar'y long-term run-off in Korea. Solving this problem, this study introduces unit-hydrograph method frequently used in short-term run-off analysis into the long-term run-off analysis, of which model basin was selected to be Sumgin-river catchment area. In the estimation of effective rainfall, conventional method neglects the Soil moisture condition of catchment area, but in this study, the initial discharge (qb) occurred just before rising phase of the hydrograph was selected as the index of a basin soil moisture condition and then introduced as 3rd variable in the analysis of the reationship between cumulative rainfall and cumulative loss of rainfall, which built a new type of separation method of effective rainfall. In next step, in order to normalize significant potential error included in hydrological data, especially in vast catchment area, Snyder's correlation method was applied. A key to solution in this study is multiple correlation method or multiple regressional analysis, which is primarily based on the method of least squres and which is solved by the form of systems of linear equations. And for verification of the change of characteristics of unit hydrograph according to the variation of a various kind of hydrological charateristics (for example, precipitation, tree cover, soil condition, etc),seasonal unit hydrograph models of dry season(autumn, winter), semi-dry season (spring), rainy season (summer) were made respectively. The results obtained in this study were summarized as follows; 1.During the test period of 1966-1971, effective rainfall was estimated for the total 114 run-off hydrograph. From this estimation results, relative error of estimation to the ovservation value was 6%, -which is mush smaller than 12% of the error of conventional method. 2.During the test period, daily distribution of long-term run-off discharge was estimated by the unit hydrograph model. From this estimation results, relative error of estimation by the application of standard unit hydrograph model was 12%. When estimating by each seasonal unit bydrograph model, the relative error was 14% during dry season 10% during semi-dry season and 7% during rainy season, which is much smaller than 37% of conventional method. Summing up the analysis results obtained above, it is convinced that qb-index method of this study for the estimation of effective rainfall be preciser than any other method developed before. Because even recently no method has been developed for the estimation of daily distribution of long-term run-off dicharge, therefore estimation value by unit hydrograph model was only compared with that due to kaziyama method which estimates monthly run-off discharge. However this method due to this study turns out to have high accuracy. If specially mentioned from the results of this study, there is no need to use each seasonal unit hydrograph model separately except the case of semi-dry season. The author hopes to analyze the latter case in future sudies.

  • PDF

Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs (최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계)

  • Kim, Hyun-Ki;Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • The damage caused by Recent frequently occurring locality torrential rains is increasing rapidly. In case of densely populated metropolitan area, casualties and property damage is a serious due to landslides and debris flows and floods. Therefore, the importance of predictions about the torrential is increasing. Precipitation characteristic of the bad weather in Korea is divided into typhoons and torrential rains. This seems to vary depending on the duration and area. Rainfall is difficult to predict because regional precipitation is large volatility and nonlinear. In this paper, Very short-term precipitation forecasting pattern model is implemented using KLAPS data used by Korea Meteorological Administration. we designed very short term precipitation forecasting pattern model using GA-based RBFNNs. the structural and parametric values such as the number of Inputs, polynomial type,number of fcm cluster, and fuzzification coefficient are optimized by GA optimization algorithm.

Short-Term Precipitation Forecasting based on Deep Neural Network with Synthetic Weather Radar Data (기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구)

  • An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.43-45
    • /
    • 2021
  • The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.

  • PDF