• Title/Summary/Keyword: short-circuit transformer

Search Result 114, Processing Time 0.028 seconds

Electromagnetic Force Calculation of Internet Winding Fault in A Distribution Power Transformer by using A Numerical Program (수치해석을 이용한 배전용 변압기 권선 고장시의 전자력 계산방법 연구)

  • Shin, Pan-Seok;Ha, Jung-Woo;Chung, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.60-67
    • /
    • 2007
  • In this paper, a simulation method of the internal winding fault is proposed to calculate winding current and electromagnetic force in a distribution power transformer by suing FEM program. The model of the transformer is a single phase, 60[Hz], 1[MVA], 22.9[kV]/220[V], cable-type winding. The short-circuit current and electromagnetic force are calculated by FEM(Finite Element Method) program(Flux2D) and the results we verified with theoretical formula and PSPICE program. The simulation results are fairly good agreement with the other verified methods within 5[%] error rate. The turn-to-turn short-circuit current is 500 times of the rated current and the electromagnetic force is about $20{\sim}200times$. The method presented in this study may serve as one of the useful tools in the electromagnetic force analysis of the transformer winding behavior under the short circuit condition for design of the structure.

A Primary-Side-Assisted Zero-Voltage and Zero-Current Switching Full Bridge DC-DC Converter with Transformer Isolation for Arc Welding (아크 용접에 적합하며 1차 측 보조회로를 사용하는 영전압-영전류 직류-직류 컨버터)

  • Jeon, Seong-Jeub;Cho Gyu-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.683-692
    • /
    • 2000
  • A new primary-side-assisted zero-voltage and zero-current switching full bridge DC-DC converter with transformer isolation is proposed. The auxiliary circuit adopted to assist ZCS for the leading leg is composed of only one small transformer and two diodes. It has a simple and robust structure, and load current control capability even in short circuit conditions. Possibility of magnetic saturation due to asymmetricity of circuits or transient phenomena is greatly reduced, which is a very attractive feature in DC/DC converters with transformer isolation. The power rating of the auxiliary transformer is about 10% of that of the main transformer. Operation of a 12.5KW prototype designed for welding application was verified by experiments.

  • PDF

Transient Characteristics by Transformer %Impedance at the time of Opening the Main Circuit Breaker on the Electric Railway Vehicle (전기철도차량 주변압기의 %임피던스에 따른 차단기 개폐시 과도특성 분석)

  • Chang, Sang-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.719-725
    • /
    • 2014
  • Transient of Electric railway vehicle occurs when change to another state. The duration of the transient phenomenon only takes a few second. During this time is considered, the present of short circuit current and the normal state, the energy is present in the form of a magnetic field. Recognized by the vibration of the transient voltage or transient current at witch energy is present in the field. This paper is presented the result of transient characteristics by transformer % impedance at the time of opening and closing of the main circuit Breaker on the electric railway vehicle.

Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

A Study on Flicker Free LED Driver for Dimming MR16 Electronic Transformer (조광기용 MR16 안정기 호환 Flicker Free LED 구동회로 연구)

  • Kim, Taek-Woo;Hong, Sung-Soo;Yeom, Bong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.327-331
    • /
    • 2014
  • LED(Light Emitting Diode) is a semiconductor device utilizing electroluminescent effect is a phenomenon in which a type of P-N junction diode, the light of short wavelength which a voltage is applied in the forward direction is released. LED is advantageous in reducing the energy as environmentally materials that can greatly reduce the carbon emissions, recent it has attracted attention IT(Information Technology) and GT(Green Technology) industry. In addition, there are advantages long life, high efficiency, and excellent response speed, LED have come into the spotlight as the illumination means to replace the existing fluorescent light and incandescent light bulb. When connecting to MR16 electronic transformer for existing LED driver circuit, due to malfunction of the dimmer and the electronic transformer, flicker occurs and linear dimming is not possible. Therefore, in this paper, we suggest an LED drive circuit there is no flicker with the corresponding dimming MR16 electronic transformer. Further, we explain the principles of the LED current control technique and the principle of the drive circuit of the LED, in order to validate the proposed circuit through prototyping and simulation.

The construction of 3-phase 90 MVA short-time withstand current testing facilities (3상 90 MVA 단시간전류시험 설비 구축)

  • Suh, Yoon-Taek;Kim, Yong-Sik;Yun, Hak-Dong;Kim, Maeng-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.700-702
    • /
    • 2005
  • The most electrical apparatus should be able to withstand short-time current and peak current during a specified short time until circuit breakers have interrupted fault current. It defines the short-time withstand ability of electric a apparatus to be remain for a time interval under high fault current conditions. It is specified by both dynamic ability and thermal capability. KERI(Korea Electrotechlology Research Institute) recently constructed the new short-time current and low voltage short circuit testing facilities. This paper shows short- circuit calculation of transformer and describes high current measuring system, and evaluate the result of short-time withstand test used in $3{\phi}$ 90MVA short-time current testing facilities.

  • PDF

Analysis of the Damage Patterns and Metal Structure of 3 Phase Mold Transformers to which Interlayer Short-circuits have Occurred (층간 단락된 3상 몰드변압기의 소손 패턴 및 금속 조직 해석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.86-91
    • /
    • 2010
  • The purpose of this study is to analyze the damage patterns and metal structure of 3 phase mold transformers collected from places where accidents have occurred. Compared to an oil-immersed transformer, a mold transformer has the advantage of requiring a smaller installation area and can be kept clean, while its disadvantages include the fact that abnormal symptoms of an accident are difficult to discover and its repair is impossible. The capacity of the mold transformers collected from places where accidents have occurred was 200kVA with primary voltages being F23,900V, R22,900V, 21,900V, 20,900V, 19,900V, etc., as well as secondary voltages being 380V, 220V, etc. It was found from the analysis on the diffusion of combustion in the damaged mold transformers that fire occurred first inside the U-phase primary winding and that carbonization and heat were diffused to V-phase and W-phase in V-pattern. In addition, from the analysis on the cross-sectional structure of the metal of the melted high voltage winding using a metallurgical microscope, it was found that the boundary surface, voids, and columnar structure were formed when an interlayer short-circuit had occurred Therefore, even though it is not possible to find the cause for the occurrence of an interlayer short-circuit at the inner side of the primary winding, it is thought that, due to the thermal energy generated when the short-circuit occurred, the heat source was diffused to the upper side and outside, causing a secondary accident.

Design, Implementation and Testing of HF transformers for Satellite EPS Applications

  • Zahran, Mohamed
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.217-227
    • /
    • 2008
  • The electric power subsystems (EPS) of most remote sensing satellites consist of a solar array as a source of energy, a storage battery, a power management and control (PMC) unit and a charge equalization unit (CEU) for the storage battery. The PMC and CEU use high frequency transformers in their power modules. This paper presents a design, implementation and testing results of a high frequency transformer for the EPS of satellite applications. Two approaches are used in the design process of the transformer based on the pre-determined transformer specifications. The transformer is designed based on an ETD 29 ferrite core. The implemented transformer consists of one center-tapped primary coil with eleven center-tapped secondary coils. The offline calculation results and measured values of R, L for transformer coils are convergence. A test circuit for measuring the transformer parameters like voltage, current and B-H hysteresis was implemented and applied. The test results confirm that the voltage waveforms of both primary and secondary coils were as desired. No overlapping occurred between the control signal and the transformer, which was not saturated during testing even during a short circuit test of the secondary channels. The dynamic B-H loop characteristics of the used transformer cores were measured. The sample test results are given in this paper.

The Study of Comparison of the Symmetrical Short Circuit Test Current with ANSI/IE Transformers. (변압기의 단락강도 시험 시 ANSI와 IEC 규격에 의한 시험 전류의 비교 연구)

  • Kim, Sun-Koo;Kim, Won-Man;La, Dae-Ryeol;Roh, Chang-Il;Lee, Dong-Jun;Jeong, Heung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.694-696
    • /
    • 2002
  • Transformers together with all equipment and accessories shall be designed and constructed to withstand the mechanical and thermal stresses produced by external short circuit which include three phase, single line-to-ground, double line-to-ground and line-to-line faults etc. Generally the Short Circuit Test of transformers is tested according to the ANSI/IEEE, IEC/JEC, KS etc, in domestic. In this study, it will be showed and compared the difference of symmetrical current for short circuit test of a Pad -mounted transformer according to with ANSI /IEEE and IEC.

  • PDF

Short-circuit Analysis by the Application of Control Signal of Power Converter to the Inductive Fault Current Limiter

  • Ahn, Min-Cheol;Hyoungku Kang;Bae, Duck-Kweon;Minseok Joo;Park, Dong-Keun;Lee, Sang-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.25-28
    • /
    • 2004
  • Three-phase inductive superconducting fault current limiter (SFCL) with DC reactor rated on 6.6 $KV_{rms}/200 A_{rms}$ has been developed in Korea. This system consists of one DC reactor, AC/DC power converter, and a three-phase transformer, which is called magnetic core reactor (MCR). This paper deals with the short-circuit analysis of the SFCL. The DC reactor was the HTS solenoid coil whose inductance was 84mH. The power converter was performed as the dual-mode operation for dividing voltage between the rectifying devices. The short-term normal operation (1 see) and short-circuit tests (2∼3 cycles) of this SFCL were performed successfully. In regular short-circuit test, the fault current was limited as 30% of rated short-circuit current at 2 cycles after the fault. The experimental results have a very similar tendency to the simulation results. Using the technique for the fault detection and SCR firing control, the fault current limiting rate of the SFCL was improved. From this research, the parameters for design and manufacture of large-scale SFCL were obtained.