• Title/Summary/Keyword: short term time series

Search Result 389, Processing Time 0.034 seconds

Hibernation Durations Affect Life-history Traits of Gymnopleurus mopsus (Coleoptera: Scarabaeidae), an Endangered Dung Beetle

  • Kim, Mannyun;Kim, Hwang;Choi, Ye-Jin;Koh, Min-Hee;Jang, Keum Hee;Kim, Young-Joong
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 2021
  • The dung beetle, Gymnopleurus mopsus (Coleoptera: Scarabaeidae), is one of endangered species in South Korea. It was last recorded in 1971. To restore this species, we introduced G. mopsus populations from eastern and southern regions of Mongolia in July 2019 and August 2019, respectively. One of the main tasks for the restoration of endangered insects is to develop breeding techniques to eventually incorporate these insects into the restoration system. In a series of laboratory experiments, we investigated effects of short-term hibernation periods on life-history traits of G. mopsus. Adult G. mopsus that had hibernated for 30, 60, and 90 days had lower survival rates than adults that had hibernated for 120 days. We also compared developmental time of these four experimental groups and found a significant difference in the egg - phase. However, the duration of hibernation did not affect the fecundity, brood-ball size, or body size of F1 adults. Follow-up studies are currently being conducted to further investigate the effect of a short-term hibernation period on population growth of G. mopsus under laboratory conditions.

Time Series Crime Prediction Using a Federated Machine Learning Model

  • Salam, Mustafa Abdul;Taha, Sanaa;Ramadan, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.119-130
    • /
    • 2022
  • Crime is a common social problem that affects the quality of life. As the number of crimes increases, it is necessary to build a model to predict the number of crimes that may occur in a given period, identify the characteristics of a person who may commit a particular crime, and identify places where a particular crime may occur. Data privacy is the main challenge that organizations face when building this type of predictive models. Federated learning (FL) is a promising approach that overcomes data security and privacy challenges, as it enables organizations to build a machine learning model based on distributed datasets without sharing raw data or violating data privacy. In this paper, a federated long short- term memory (LSTM) model is proposed and compared with a traditional LSTM model. Proposed model is developed using TensorFlow Federated (TFF) and the Keras API to predict the number of crimes. The proposed model is applied on the Boston crime dataset. The proposed model's parameters are fine tuned to obtain minimum loss and maximum accuracy. The proposed federated LSTM model is compared with the traditional LSTM model and found that the federated LSTM model achieved lower loss, better accuracy, and higher training time than the traditional LSTM model.

LSTM algorithm to determine the state of minimum horizontal stress during well logging operation

  • Arsalan Mahmoodzadeh;Seyed Mehdi Seyed Alizadeh;Adil Hussein Mohammed;Ahmed Babeker Elhag;Hawkar Hashim Ibrahim;Shima Rashidi
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • Knowledge of minimum horizontal stress (Shmin) is a significant step in determining full stress tensor. It provides crucial information for the production of sand, hydraulic fracturing, determination of safe mud weight window, reservoir production behavior, and wellbore stability. Calculating the Shmin using indirect methods has been proved to be awkward because a lot of data are required in all of these models. Also, direct techniques such as hydraulic fracturing are costly and time-consuming. To figure these problems out, this work aims to apply the long-short-term memory (LSTM) algorithm to Shmin time-series prediction. 13956 datasets obtained from an oil well logging operation were applied in the models. 80% of the data were used for training, and 20% of the data were used for testing. In order to achieve the maximum accuracy of the LSTM model, its hyper-parameters were optimized significantly. Through different statistical indices, the LSTM model's performance was compared with with other machine learning methods. Finally, the optimized LSTM model was recommended for Shmin prediction in the well logging operation.

The Impact of Exchange Rate on Exports and Imports: Empirical Evidence from Vietnam

  • NGUYEN, Nga Hong;NGUYEN, Hat Dang;VO, Loan Thi Kim;TRAN, Cuong Quoc Khanh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.61-68
    • /
    • 2021
  • The exchange rate is considered a tool improving the volume of exports and reducing imports. This paper aims to determine the impact of the exchange rate on exports and imports between Vietnam and the United States in the context of the trade war. The research uses Autoregressive Distributed Lag (ARDL) and Nonlinear Autoregressive Distributed Lag (NARDL) Model in the time-series data from 2010:1 to 2020:9. The ARDL's results support that real exchange rate impact on export and import volumes, but less than the trade war. The trade war helps trade balance increase 0.35%, while the exchange rate increases trade balance 0.191% when the Vietnamese currency devalues 1% in the long run. In the short term, the real exchange rate makes the trade balance decrease. Therefore, the J curve exists between Vietnam and the U.S. The NARDL expresses that the exchange rate is asymmetric both in the short term and the long term. The findings of this study point to two important elements. Firstly, the exchange rate plays a minor role in exports and imports. Secondly, trade war plays a vital role in increasing exports and imports volume between two countries, and the J curve exists between the two countries.

The Potential of Sentinel-1 SAR Parameters in Monitoring Rice Paddy Phenological Stages in Gimhae, South Korea

  • Umutoniwase, Nawally;Lee, Seung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.789-802
    • /
    • 2021
  • Synthetic Aperture Radar (SAR) at C-band is an ideal remote sensing system for crop monitoring owing to its short wavelength, which interacts with the upper parts of the crop canopy. This study evaluated the potential of dual polarimetric Sentinel-1 at C-band for monitoring rice phenology. Rice phenological variations occur in a short period. Hence, the short revisit time of Sentinel-1 SAR system can facilitate the tracking of short-term temporal morphological variations in rice crop growth. The sensitivity of SAR backscattering coefficients, backscattering ratio, and polarimetric decomposition parameters on rice phenological stages were investigated through a time-series analysis of 33 Sentinel-1 Single Look Complex images collected from 10th April to 25th October 2020 in Gimhae, South Korea. Based on the observed temporal variations in SAR parameters, we could identify and distinguish the phenological stages of the Gimhae rice growth cycle. The backscattering coefficient in VH polarisation and polarimetric decomposition parameters showed high sensitivity to rice growth. However, amongst SAR parameters estimated in this study, the VH backscattering coefficient realistically identifies all phenological stages, and its temporal variation patterns are preserved in both Sentinel-1A (S1A) and Sentinel-1B (S1B). Polarimetric decomposition parameters exhibited some offsets in successive acquisitions from S1A and S1B. Further studies with data collected from various incidence angles are crucial to determine the impact of different incidence angles on polarimetric decomposition parameters in rice paddy fields.

Experimental Study on the Short-Term Prediction of Rebar Price using Bidirectional LSTM with Data Combination and Deep Learning Related Techniques (양방향 LSTM과 데이터 조합탐색 및 딥러닝 관련 기법을 활용한 철근 가격 단기예측에 관한 실험적 연구)

  • Lee, Yong-Seong;Kim, Kyung-Hwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.38-45
    • /
    • 2020
  • This study presents a systematic procedure for developing a short-term prediction deep learning model of rebar price using bidirectional LSTM, Random Search, data combination, Dropout. In general, users intuitively determine these values, making it time-consuming and repetitive attempts to explore results with good predictive performance, and the results found by these attempts cannot be guaranteed to be excellent. With the proposed approach presented in this study, the average accuracy of short-term price forecasts is approximately 98.32%. In addition, this approach could be used as basic data to produce good predictive results in a study that predicts prices with time series data based on statistics, including building materials other than rebars.

LSTM based Network Traffic Volume Prediction (LSTM 기반의 네트워크 트래픽 용량 예측)

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Huu-Duy;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.362-364
    • /
    • 2018
  • Predicting network traffic volume has become a popular topic recently due to its support in many situations such as detecting abnormal network activities and provisioning network services. Especially, predicting the volume of the next upcoming traffic from the series of observed recent traffic volume is an interesting and challenging problem. In past, various techniques are researched by using time series forecasting methods such as moving averaging and exponential smoothing. In this paper, we propose a long short-term memory neural network (LSTM) based network traffic volume prediction method. The proposed method employs the changing rate of observed traffic volume, the corresponding time window index, and a seasonality factor indicating the changing trend as input features, and predicts the upcoming network traffic. The experiment results with real datasets proves that our proposed method works better than other time series forecasting methods in predicting upcoming network traffic.

The Effect of the Reduction in the Interest Rate Due to COVID-19 on the Transaction Prices and the Rental Prices of the House

  • KIM, Ju-Hwan;LEE, Sang-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.8
    • /
    • pp.31-38
    • /
    • 2020
  • Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.

A Study of Economic Indicator Prediction Model using Dimensions Decrease Techniques and HMM (차원감소기법과 은닉마아코프모델을 이용한 경기지표 예측 모델 연구)

  • Jeon, Jin-Ho;Kim, Min-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.305-311
    • /
    • 2013
  • The size of the market as the economy continues to evolve, in order to make the right decisions to accurately predict the economic problems the market has emerged as an important issues. To express the modern economic system, the largest of the various economic indicators, pillars stock indicators analysis and decision-making with a proper understanding of the problem for the application of the model is suitable for time-series data concealment HMM. Based on this time series model and the calculation of the time and cost savings dimension decrease techniques for the estimation and prediction of the model was applied to the problem was to verify the validity. As a result, the model predictions in both the short term rather than long-term predictions of the model estimates the optimal predictive value similar pattern very similar to both the actual data and was able to confirm that.

Long-term Creep Strain-Time Curve Modeling of Alloy 617 for a VHTR Intermediate Heat Exchanger (초고온가스로 중간 열교환기용 Alloy 617의 장시간 크리프 변형률-시간 곡선 모델링)

  • Kim, Woo-Gon;Yin, Song-Nam;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.613-620
    • /
    • 2009
  • The Kachanov-Rabotnov (K-R) creep model was proposed to accurately model the long-term creep curves above $10^5$ hours of Alloy 617. To this end, a series of creep data was obtained from creep tests conducted under different stress levels at $950^{\circ}C$. Using these data, the creep constants used in the K-R model and the modified K-R model were determined by a nonlinear least square fitting (NLSF) method, respectively. The K-R model yielded poor correspondence with the experimental curves, but the modified K-R model provided good agreement with the curves. Log-log plots of ${\varepsilon}^{\ast}$-stress and ${\varepsilon}^{\ast}$-time to rupture showed good linear relationships. Constants in the modified K-R model were obtained as ${\lambda}$=2.78, and $k=1.24$, and they showed behavior close to stress independency. Using these constants, long-term creep curves above $10^5$ hours obtained from short-term creep data can be modeled by implementing the modified K-R model.