• Title/Summary/Keyword: shoreline deformation

Search Result 16, Processing Time 0.233 seconds

Impact Assessment of Beach Erosion from Construction of Artificial Coastal Structures Using Parabolic Bay Shape Equation

  • Lim, Changbin;Lee, Sahong;Park, Seung-Min;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.436-441
    • /
    • 2020
  • Wave field changes resulting from artificial coastal structures constructed in coastal zones have emerged as a major cause of beach erosion, among other factors. The rates of erosion along the eastern coast of Korea have varied mainly owing to the construction of various ports and coastal structures; however, impact assessments of these structures on beach erosion have not been appropriately conducted. Thus, in this study, a methodology to assess the impact of erosion owing to the construction of artificial structures has been proposed, for which a parabolic bay shape equation is used in determining the shoreline angle deformation caused by the structures. Assuming that the conditions of sediment or waves have similar values in most coastal areas, a primary variable impacting coastal sediment transport is the deformation of an equilibrium shoreline relative to the existing beach. Therefore, the angle rotation deforming the equilibrium of a shoreline can be the criterion for evaluating beach erosion incurred through the construction of artificial structures. The evaluation criteria are classified into three levels: safety, caution, and danger. If the angle rotation of the equilibrium shoreline is 0.1° or less, the beach distance was considered to be safe in the present study; however, if this angle is 0.35° or higher, the beach distance is considered to be in a state of danger. Furthermore, in this study, the distance affected by beach erosion is calculated in areas of the eastern coast where artificial structures, mainly including ports and power plants, were constructed; thereafter, an impact assessment of the beach erosion around these areas was conducted. Using a proposed methodology, Gungchon Port was evaluated with caution, whereas Donghae Port, Sokcho Port, and Samcheok LNG were evaluated as being in a state of danger.

Shoreline Change Model in Haeundae Beach (해운대 해빈의 해안선변형 예측 모형)

  • 박일흠;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-62
    • /
    • 1989
  • Shoreline change of Haeundae beach was predicted by one-line model considering interaction of seawalls and longshore variation of wave height . Wave deformation was calculated by combined wave refraction-diffraction model . In this shoreline change model, empirical constants and offshore sediment transport rate are treated as calibration parameters, and the calculated results are in good agreement with the observed data.

  • PDF

Long-Term Shoreline Change and Evaluation of Total Longshore Sediment Transport Rate on Hupo Beach (후포해빈에서 해안선의 장기변화 및 전연안표사량의 추정)

  • Park, Il-Heum;Lee, Young-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • The harbor siltation by longshore sediment transports has become a serious problem on the East Coast of Korea. A reasonable prediction of the longshore sediment rate is important to approach the siltation problem effectively. In the recently developed 1-line model, the empirical constants of the sediment transport formula, which include the absolute quantity of sediment transport rate and the spatial distribution of breaking wave height by wave deformation, are treated as calibration parameters. Since these constants should be determined by the very long-term shoreline data, the longshore sediment rates are much more reasonable values. The method was applied to Hupo Beach, which has experienced heavy siltation. The authors also discuss long-term shoreline change using aerial photos and the observed wave-induced current patterns. According to the result, the SW-direction sediment transport rate was $146,892m^3/year$, and the NE direction was $2,694,450m^3/year$ at Hupo Beach for the last 11 years. The siltation in Hupo Harbor might be affected by the NE-direction sediment transport from Hupo Beach.

Predicting Long-Term Shoreline Change Due to the Construction of Submerged Breakwaters in Manseongri Beach (잠제설치에 따른 만성리해빈에서 해안선의 장기변화 예측)

  • Park, Il Heum;Kang, Seong Wuk;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.527-535
    • /
    • 2016
  • The Manseongri Coast meets the sea on the southeast and is composed of coarse sediment as a mesotidal beach. The waves that strike the beach are stronger than the tides or tidal currents as external forces of beach deformation. Storm waves frequently reach significant wave heights of 2-3m and hit in spring and summer, leaving the sea calm during fall and winter. Incident waves reach remarkable heights that correspond with observed shoreline changes. The shoreline erodes in spring and summer due to these strong waves but recovers in fall and winter as a result of the more moderate waves. On the basis of these observed results, a numerical calibration for experiments on shoreline change was established. Results revealed that according to hindcast data, calculated shoreline changes agreed with the observed shoreline, with a minimum RMS error of 1.26m with calibration parameters $C_1=0.2$ and $C_2=1C_1$. Using these calibration parameters, long-term shoreline change was predicted after the construction of submerged breakwaters and jetties, etc. The numerical model showed that the shoreline would move forward by 5-15m behind the submerged breakwaters and recede by 5-15m north of the structure.

A Shoreline Change Model around Coastal Structures (해안구조물 주변에서 해안선변형 예측모형 실험)

  • 이종섭;박일현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 1990
  • A numerical model is developed to predict the shoreline change by the coastal structures constructed. In order to describe the wave deformation at the shadow zone of the structure, the present model employs the mild-slope equation in steady state and the wave ray method using the coefficients of wave refraction, diffraction and shoaling. In the model results of shoreline changes for the various structures. it showed a qualitative agreement with the findings observed in the field such as tombolo, and the response of this model was found to be very sensitive to the longshore distribution of wave heights. It was also applied to a field area. From the results of the application this model is proved to be useful around the complex coastal structures and bottom topography.

  • PDF

Development of Hybrid Three Dimensional Beach Deformation Model and Its Application (복합 3차원 해빈변형모델의 구축과 그 적용)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Construction of a large offshore structure in coastal area may cause serious morphological changes for a wide region ranging from shoreline to offshore behind the structure. Shin et at. [2000] and Shin and Hong [2004] identified the sediment transport patterns behind the large offshore structure through a series of three dimensional movable bed experiments. In present study, a hybrid three dimensional beach deformation model was suggested based on those sediment transport mechanisms revealed by experimental results of the preceding studies. The model was verified by the results of the three dimensional moveable bed experiments and they agreed well not only in reappeared tombolo in shoreline side but also in the erosion and deposition region behind offshore structure. In addition, the model was applied to real beach deformation problem, which was occurred by construction of artificial offshore islands, and it validates the applicability of the model.

  • PDF

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.

A Study of the Behaviors of Nourishing Sand on the Artificial Nourishment Beach (인공양빈해안의 해빈특성에 관한 연구)

  • 민병형;김가현;김진생
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.60-66
    • /
    • 1987
  • The object of this study is to investigate behaviors of beach fill replenished at three coasts of different configurations by analyzing successively measured beach profiles. The main results obtained in this study are summarized as follows; 1) The amount of nourishing sand moved in the longshore direction surpasses the amount of nourishing sand transported in the cross-shore direction regardless of shapes of the coasts and types of the structures. 2) A clear correlation between displacements of shoreline and changes of sectional areas can be found soon after the placement of beach fill in the fields. This implies that the deformation of the artificial nourishment and dissipation or remaining rate of nourishing sand can be predicated by the one-line theory. 3) The patterns of sediment movements in the artificially nourished beaches are clearly found by the analysis of empirical eignfuncitions.

  • PDF

Beach Deformation Caused by Typhoon Chaba in 2016 Along the Manseongri Coast Related Coastal Improvement Project (연안정비사업이 수행된 만성리 해수욕장에서 2016년 태풍 차바에 의한 해빈변화)

  • Park, Il Heum;Park, Wan-Gyu;Jeong, Seung Myong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.710-718
    • /
    • 2017
  • After Typhoon Chaba (No.18, 2016) collided with Manseongri Beach, a coastal improvement project was carried out since strong external forces such as waves, storm surges and wave-induced currents were observed to cause beach deformation. The shoreline, beach area and beach volume were periodically surveyed. On the basis of this field data, the beach deformation that occurred at Manseongri Beach has been formally described. Over three months after beach nourishment work began, the beaches were gradually stabilized in terms of natural external forces. However, this stabilization was interrupted by Typhoon Chaba. After two months of typhoon weather, the beach returned to a stable state and no changes were observed until one year after the beach recovery work. Just after the typhoon hit, the shoreline receded from the northern side, where no reduction of external forces occurred, while the rear beach area submerged by breakwater advanced. Also, the beach volume decreased by $3,395m^3$ after the typhoon, due to erosion that occurred on the northern beach, with deposition taking place on the southern backshore area. Therefore, it has been concluded that the coastal improvement project undertaken at Manseongri Beach has significantly contributed to conservation in areas of wave-dominant sediment transport.

The Research of Beach Deformation after Construction of the Jetties

  • Park, Sang-Kil;Han, Chong-Soo;Roh, Tae-Young;Park, O-Young;Ahn, Ik-Seong;Lee, Ji-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.185-191
    • /
    • 2011
  • This research was described the prevention of coastal topographical change and sediment diffusive concentration incoming from small estuary after construction jetties. This structure is constructed to decrease sediment deposition incoming from the upstream river due to the urbanization and industrial development and to minimize effects on the coastal ecosystem. The physical modeling and numerical modeling for waves were conducted to analyze the configuration of Imrang sand beach deformation without and with construction of jetty. The specification of the installed jetty, which is able to control sedimentation concentration was decided based on the prediction of the Imrang beach area changes by space and time. As a result, the jetties constructed in the estuary retarded the rate of sand sediment, so that the effect area of sand sedimentation was obviously decreased. In addition, the measured field data indicated that the sediment deposition inside of dikes could be controlled and the right side area of jetties could be preserved without sediment deposition.