• Title/Summary/Keyword: shoreline changes

Search Result 85, Processing Time 0.022 seconds

Variation in Vegetation Area caused by Topographical Change at Jinudo in the Nakdong Estuary (낙동강 하구역 진우도내 지형변동에 따른 식생면적의 변화)

  • Ryu, Sung-Hoon;Lee, In-Cheol;Park, So-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2009
  • In order to analysis the variation in vegetation area caused by topographical change at Jinudo in the Nakdong estuary, we used aerial photographs of Jinudo from 1998 to 2006. To extract an accuracy shoreline from these aerial photographs, a tide calibration was performed. We also estimated the annual variation in topographic area and vegetation area, and then analyzed the relationship between them by a correlation analysis. The following results were obtained: 1) The calibrated shoreline distance of Jinudo from 1998 to 2006 was estimated to have a range of (-)1,927 cm to (+)4,671 cm. 2) Annual changes in the topographic area and vegetation area in Jinudo have been increasing gradually from 1998, and the correlation coefficient between topographic area and vegetation area is 0.97. 3) The estimated topographic areas were with following order: southern (III), eastern (IV), northern (II) and western (I), while for the vegetation area, the order was southern (III), northern (II), eastern (IV) and western (I). 4) The vegetation area of the southern region (III) of Jinudo had the largest size among the regions, and was calculated to be $4.3{\sim}5.4$ times larger than the eastern region (IV).

Review of Coastal Environmental Measurement Techniques Using Video Monitoring (비디오 모니터링을 이용한 연안환경 관측기술에 대한 고찰)

  • 김태림;이광수;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Video monitoring techniques and their applications to beaches were reviewed. The recent development of video hardware and image process made it possible to measure shoreline changes, sandbar morphology, wave runup, swash motion, and so on using video camaras. Especially, quantitative information from the video image can be obtained by digitization of image, rectification procedure, and image process. Using video monitoring techniques, measurements can be made at much lower cost and for long periods of time compared to the traditional measurement techniques, although these techniques are of lower accuracy and provide only indirect information on the land and water surface.

  • PDF

Advances in Shoreline Detection using Satellite Imagery (위성영상을 활용한 해안선 탐지 연구동향)

  • Tae-Soon Kang;Ho-Jun Yoo;Ye-Jin Hwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.598-608
    • /
    • 2023
  • To comprehensively grasp the dynamic changes in the coastal terrain and coastal erosion, it is imperative to incorporate temporal and spatial continuity through frequent and continuous monitoring. Recently, there has been a proliferation of research in coastal monitoring using remote sensing, accompanied by advancements in image monitoring and analysis technologies. Remote sensing, typically involves collection of images from aircraft or satellites from a distance, and offers distinct advantages in swiftly and accurately analyzing coastal terrain changes, leading to an escalating trend in its utilization. Remote satellite image-based coastal line detection involves defining measurable coastal lines from satellite images and extracting coastal lines by applying coastal line detection technology. Drawing from the various data sources surveyed in existing literature, this study has comprehensively analyzed encompassing the definition of coastal lines based on satellite images, current status of remote satellite imagery, existing research trends, and evolving landscape of technology for satellite image-based coastal line detection. Based on the results, research directions, on latest trends, practical techniques for ideal coastal line extraction, and enhanced integration with advanced digital monitoring were proposed. To effectively capture the changing trends and erosion levels across the entire Korean Peninsula in future, it is vital to move beyond localized monitoring and establish an active monitoring framework using digital monitoring, such as broad-scale satellite imagery. In light of these results, it is anticipated that the coastal line detection field will expedite the progression of ongoing research practices and analytical technologies.

Development of Hybrid Three Dimensional Beach Deformation Model and Its Application (복합 3차원 해빈변형모델의 구축과 그 적용)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Construction of a large offshore structure in coastal area may cause serious morphological changes for a wide region ranging from shoreline to offshore behind the structure. Shin et at. [2000] and Shin and Hong [2004] identified the sediment transport patterns behind the large offshore structure through a series of three dimensional movable bed experiments. In present study, a hybrid three dimensional beach deformation model was suggested based on those sediment transport mechanisms revealed by experimental results of the preceding studies. The model was verified by the results of the three dimensional moveable bed experiments and they agreed well not only in reappeared tombolo in shoreline side but also in the erosion and deposition region behind offshore structure. In addition, the model was applied to real beach deformation problem, which was occurred by construction of artificial offshore islands, and it validates the applicability of the model.

  • PDF

Shoreline Change Analysis of Haeundae Beach Using Airborne LiDAR Survey (항공 LiDAR 측량을 이용한 해운대 해안의 해안선 변화 분석)

  • Lee, Jae One;Kim, Yong Suk;We, Gwang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.561-567
    • /
    • 2008
  • In this study, shoreline change was analyzed by RTK-GPS and advanced airborne LiDAR survey. For extraction of coastline, first of all, tide correction was conducted at all RTK-GPS points through the comparing with the corresponding tidal height, and cross section providing coastline was produced using Autocad Civil3D program. Comparing with two results of RTK-GPS (first, 29 Aug 2007; second, 6 Oct 2007) surveys, coastline of the first result had been decreased about 21m compare with that of the second. And it was also demonstrated that the length of coastline by the first RTK-GPS was 15m shorter than that by the airborne LiDAR survey (Dec. 2006). In addition, we recoquized that the erosion appeared in the top right-hand (dock area); the sediment in the bottom left-hand (Chosun beach area) of the Haeundae beach. As a result, therefore, it was learned that artificial sand filling for beach open and natural effects such as a typhoon, current drift, wind direction gave cause for area changes and coastline.

Marine Terraces of the Eastern Coast of Korean Peninsula

  • Park, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.15-15
    • /
    • 2003
  • In South Korea, marine terraces have been well developed along the eastern coastal zone, and previous researches on the marine terraces have also been focused on to this coastal zone. The marine terraces of the eastern coast of South Korea had been classified into three terrace groups, that is, the higher, middle, and lower surface ones, according to the heights of marine terraces by previous studies(Oh, 1981 ;Chang, 1987 ;Yoon et. al, 1999, 2003 ; Hwang and Yoon, 1996 etc.). Recently, however, it tends to classify the marine terraces based on the concept of geomorphic surface units(Lee, 1987 ; Kim, 1990 ; Choi, S. 2003; Choi S. et. al 2003a,b, etc). For example, it was proposed that the marine terrace surfaces of Eupcheon coast of the southeastern coastal area of Korea could be classified into 16 geomorphic surfaces, i.e., Eupcheon 1terrace(former shoreline height of 160m), 2(153m), 3(140m), 4(130m), 5(124m), 6(115m), 7(100m), 8(92m), 9(82m), 10(71m), 11(62m), 12(53m), 13(43m), 14(35m), 15(18m) and 16(10m) surfaces, in descending order, according to the former shoreline heights(Choi, S, 2003 ; Choi, S. et. al, 2003a,b). Among these terraces, Eupcheon 1, 2, 4, 5 and 7 surfaces had not been reported in previous works. Among the above mentioned marine terraces, Eupcheon 15 terrace, the most widely and continuously distributed marine terrace have been identified as marine terrace of the Last Interglacial culmination period(oxygen isotope stage 5e) which was based on amino acid dates(124∼125ka BP) and geomorphological features such as red soil, pollen analysis, fossil cryogenic structures and crossing terrace concept. Eupoheon 15 terrace surfaces have also been proposed as the key surface for the identification and correlation of the so-called '5e' marine terrace in the eastern coast of South Korea. This terrace was reconfirmed as the Last Interglacial culmination period, which was based on the identification of Ata tephra, one of the wide-spread marker tephra which indicates the Last Interglacial culmination period in Japan by Sasaki et. al(2002). It was thought that marine terraces of the eastern coast of South Korea had been formed by the steady-state uplifting during the Quaternary glacio-eustatic sea level changes(Choi, 1997). The uprift rate of 10cm/1,000years had been proposed in the eastern coast of South Korea based on the former shoreline altitude(18m) of the above Eupcheon 15 terrace. Therefore, it can be estimated that Eupcheon 1 terrace had been formed in the early Pleistocene from the above uprift rate. The OSL dating for the samples of Eupcheon 7, 9, 13, 15 and 16 terraces and identification of marker tephra in the terrace deposits are in progress. It is expected that more elaborate chronology on themarine terraces of the eastern coast of South Korea could be established by these absolute dates and marker-tephra.

  • PDF

A Study on the Erosion and Retreat of Sea-Cliff through the Multi-temporal Aerial Photograph Data and Field Survey: The Case Study of Taean Peninsula, Korea (다중시기 항공사진과 현장조사를 통한 해안침식 변화 연구: 태안반도를 사례로)

  • WOO, Han-byol;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.4
    • /
    • pp.71-83
    • /
    • 2010
  • In this study, the volume of shoreline retreat at sea-cliffs in the Taean peninsula(West Coast of Korea) was estimated and their erosion and seasonal landforms characteristics changes were investigated through multi-temporal aerial photographs and field survey. Based on the analysis of aerial photographs through ortho-correction, the results show that the length of shoreline and erosion area increase as erosion at sea-cliffs occurs in Pado-li and Dundu-li. To obtain the seasonal quantitative landforms changes and retreat of sea-cliffs, we marked top, middle, and bottom datum-points, from which the distance to the nearest bedrock was repeatedly measured. In these regions, the retreat of sea-cliffs gradually increases in spring to summer, but gradually decreases in autumn. In particular, the typhoon that has a great influence on the Korean peninsula in July to September in summer would drastically increase the retreat of sea-cliffs in comparison with other seasons. As the outcrop of sea-cliffs repeats freezing and thawing in winter, the retreat of sea-cliffs increases a little due to active mechanical weathering. To know the erosion and seasonal landforms changes of sea-cliffs, we took pictures of them in every month and then analyze their condition. The retreat of sea-cliffs was repeatedly occurred by the circulation of the erosion of sea-cliff base, landslides, the formation of slope sediment debris and their erosion, in that order.

A Study of the Behaviors of Nourishing Sand on the Artificial Nourishment Beach (인공양빈해안의 해빈특성에 관한 연구)

  • 민병형;김가현;김진생
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.60-66
    • /
    • 1987
  • The object of this study is to investigate behaviors of beach fill replenished at three coasts of different configurations by analyzing successively measured beach profiles. The main results obtained in this study are summarized as follows; 1) The amount of nourishing sand moved in the longshore direction surpasses the amount of nourishing sand transported in the cross-shore direction regardless of shapes of the coasts and types of the structures. 2) A clear correlation between displacements of shoreline and changes of sectional areas can be found soon after the placement of beach fill in the fields. This implies that the deformation of the artificial nourishment and dissipation or remaining rate of nourishing sand can be predicated by the one-line theory. 3) The patterns of sediment movements in the artificially nourished beaches are clearly found by the analysis of empirical eignfuncitions.

  • PDF

Analysis of Shoreline Changes of Gagokcjon River Estuary Using Terrestrial LiDAR (지상 LiDAR를 이용한 가곡천 하구부 해안선변화 분석)

  • Tak, WonJun;Jun, KyeWon;Lee, HoJin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.327-327
    • /
    • 2017
  • 최근 지구 온난화에 따른 기후변화로 인한 해수면 상승과 폭풍해일의 강도 및 발생빈도가 증가하고 고파랑 내습, 난개발 등으로 인한 연안 지역의 해안선 변화 및 연안 침식이 크게 문제화되고 있다. 연안 환경의 변화를 분석하는 방법에는 광파측거기를 이용한 해빈 측량, RTK-GPS를 이용한 측정, 항공사진 분석 등이 주된 연구 방법이지만 이러한 연구 방법으로는 미세한 지형 변화의 관찰은 어려움이 많았으며 세밀하고 정량적인 지형분석이 요구 되었다. 본 연구에서는 연구대상지역인 가곡천 하구부를 대상으로 지상 LiDAR를 이용해 장기간 정밀측량을 실시하였다. 자료를 바탕으로 가곡천 하구부의 부피와 면적을 비교분석하였으며, 해안선변화의 정량적 비교분석을 실시하였다.

  • PDF

Sea-level Change and Coastal Erosion (해수면 변화와 해안 침식)

  • Jeon, Dong-Chull
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.289-304
    • /
    • 1995
  • Time series of the relative sea levels at the selected tide-gauge stations in the North Pacific and historical aerial photographs in the Hawaiian Islands are analyzed. Long-term rising trend of sea level ranges from +1 to +5 mm/yr at most of the stations, which is primarily due to global warming and tectonic motion of the plates. The annual and interannual fluctuations of sea level result from the thermal expansion/contraction of sea-surface layer due to the annual change of the solar radiation and possibly from a coupled ocean-atmosphere phenomenon associated with an ENSO event, respectively. Sea-level changes in three different time-scales (linear trend. annual oscillation, and interannual fluctuation) and their quantitative contribution to the shoreline changes as a result of long-term cross-shore sediment transport arc hypothesized.

  • PDF