• Title/Summary/Keyword: shooting methods

Search Result 109, Processing Time 0.025 seconds

Development of Rating Systems for Power Transmission Bevel Gears (동력전달용 베벨기어의 강도평가 시스템 개발 연구)

  • Chong, T.H.;Chi, J.J.;Byun, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.66-73
    • /
    • 1995
  • Rating systems of bevel gears(straight, spiral, and zerol bevel gears) which are commonly used as power transmission devices for non-papallel axes are developed on the personal computer, which analyze and/or evaluate the gear design and the service performance at the point of view of strength and durability. The typical considerations of the ratings are the bending strength, the surface durability, and the scoring resistance. The ratings are carried out using the reliable standards of AGMA & Gleason Works. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength, dura- bility, and scoring partially in Gleason are appraised seperately by each method, and a series of the estimation processes is integrated into the system so as to compare each result. The developed rating systems can be used in the initial stage of gear design process, and also a better design can be performed by the evaluation of the initial design at the view point of gear strength and durability. Additionally, it is useful for the trouble-shooting of bevel gear system and to the purpose of introducing the methods for maintaining design strength in service, with appraising the gear strength after design or with appraising the influencing factor as a whole. Therefore, this rating systems can help the aim of design automation of bevel gears.

  • PDF

A Study of Frangibility of 9MM Bullet Related to Material Composition and Sinter Condition (합금 조성 및 소결 조건에 따른 9MM 탄자의 파쇄성에 관한 연구)

  • Kim, Bo-Ram;Seo, Jung-Hwa;Jung, Hee-Chur;Kim, Kyu-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.615-622
    • /
    • 2020
  • Frangible bullets, which are shredded after impact on a target, reduce the possibility of both ricochet and unexpected injury in shooting training and in mission acts in dams, nuclear power plants, and cultural properties. Reducing the levels of hazardous materials in shooting ranges, such as lead, has become an important agenda for the government and environmental groups. In this study, the shape of a frangible bullet was designed for efficient shredding, and the safety and reliability were confirmed by actual firing under different process conditions. In addition, the physical characteristics, such as compaction pressure, density, and frangibility of each process, were compared by analyzing the microstructure of the sintered frangible bullet. The experiment revealed the smallest fragmentation after impact on the target under the following conditions: Cu-Sn 85:15; sintering temperature, 600℃; sintering time, one hour. Further development of the process conditions and experimental methods will contribute to the performance and environmental improvement of a frangible bullet.

Camera App of Smartphone with Multi-Focus Shooting and Focus Post-processing Functions (다초점 촬영과 초점후처리 기능을 가진 스마트폰 카메라 앱)

  • Chae-Won Park;Kyung-Mi Kim;Song-Yeon Yoo;Yu-Jin Kim;Kitae, Hwang;In-Hwang Jung;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.189-196
    • /
    • 2024
  • Currently, it is almost impossible to move the focus of a previously taken photo to a different location. This paper challenges a technology that can move the focus of a captured photo to another location after shooting. To achieve this goal, this paper proposed and implemented a method for taking photos with various focuses at the moment the camera took pictures and storing them in a single JPEG file to extract photos focused on the user's preferred location. In this paper, two methods are implemented: taking various photos by quickly moving the focal length of the lens from close to far away, and taking various photos focused on each object by recognizing objects in the camera viewfinder. Various photos taken are stored in a single JPEG to maintain compatibility with traditional photo viewers. At this time, this JPEG file used the All-in-JPEG format proposed in previous research to store a variety of images. This paper verified its practicality by implementing these technologies in an Android app named OnePIC.

Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation (지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가)

  • Kim, Ho-Rim;Kim, Kyoung-Ho;Yun, Seong-Taek;Hwang, Sang-Il;Kim, Hyeong-Don;Lee, Gun-Taek;Kim, Young-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.

Study on the meaning of bio-design by metamorphosis and its possibility of utilizing (변태에 의한 바이오 디자인의 의미와 이의 활용 가능성에 대한 고찰)

  • Cho, Eun-Haun;Park, Jeong-Soon
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.431-439
    • /
    • 2016
  • Designers are implementing the trial for enhancing human happiness and quality of life. As the happiness factor experienced by each individual is diverse based on human economic growth, absolute design has reached the limitations. A tool to represent the speedy development of change in consumption and problem shooting methods is necessary. Currently, no tool exists that develops in response to changing conditions and subsequent changes. As the solution to this necessity, worm's metamorphosis would be meaningful in design whereby tools exist and necessity as well as solution methods are in advanced change. Rice continues growth following the season, and no single method exists to remove the germs and worms. This study clarified the problems to be resolved by staging the lifetime of rice in 5 stages in environmental changes and conditions. This worm in metamorphosis design is developing brilliantly in biotechnology. However, the environment and conditions that bring happiness to humans do evolve, and this study aims to be the academic research for the design which accordingly replaces the tools.

The Method for Estimating Stereoscopic Object Position with Horizontal-Moving Camera (수평이동방식 입체카메라의 입체영상의 결상 위치 추정 방법)

  • Lim, Young-Tae;Kim, Nam;Kwon, Ki-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.532-536
    • /
    • 2006
  • The position of stereoscopic objects is an important parameter to induce three-dimensional effects such as convergence control and image distortions. There are three kinds of stereoscopic cameras : Parallel, Toed-in, and Horizontal-Moving cameras. In this paper we proposed the method for estimating stereoscopic object position with a horizontal-moving camera. In the previous methods, viewing angle ratios are used to estimate the object positions. Our method based on the horizontal movements of the camera to estimate the positions. Using geometrical models of shooting and display we experimented with two methods. Results of experiments showed the distance of stereoscopic objects on virtual screen related to horizontal movement.

Analysis of dental radiography phantom practice of dental hygiene students (치위생과 학생의 치과방사선 팬텀활용 촬영실습 분석)

  • Won, Bok-Yeon;Hwang, Mi-Yeong;Jang, Gye-Won;Heo, Nam-Suk;Yun, Mi-Suk;Park, Sung-Suk
    • Journal of Korean society of Dental Hygiene
    • /
    • v.18 no.6
    • /
    • pp.1013-1023
    • /
    • 2018
  • Objectives: The purpose of this study is to evaluate dental hygiene students' recognition of safety management and phantom practice in dental radiology. Methods: The study subjects were 409 students in six regions who completed a dental radiology practice course and had on-job experience more than once. After understanding the study purpose and contents, they answered a questionnaire. The main jobs in dental radiology were analyzed. Results: As a result, regarding the most difficult aspects of dental radiology practice, "it is impossible to irradiate the mouth directly with X-rays" was the most common response (29.1%). Regarding the question "what is the main role of students in dental radiology practice?", the answer "it is shooting simulations using phantoms" accounted for 59.7% of responses. The most difficult regions in bisecting and paralleling radiography with a phantom were found to be the maxillary & mandibular molars and premolars. The most difficult technique was reported to be locating XCP maintenance to fit inside the mouth for both molars and premolars. The most difficult region to perform bitewing radiography using the phantom was the molar region (2.87), and the most difficult to perform occlusal radiography approaches were maxillary anterior general occlusal radiography (2.92) and mandibular cross-sectional occlusal radiography (3.00). Conclusions: The most technically difficult point in bitewing and occlusal radiography was the correct positioning of the vertical and horizontal angles. Radiography practice was considered to be more effective than previous mutual practice in terms of analysis of anatomical structures and patient treatment methods. Therefore, it will be necessary to improve policy regarding dental radiography practice at the department of dental hygienics and revise the necessary laws and regulations.

Current Use and Issues of Generative AI in the Film Industry (영화산업의 생성형 인공지능(Generative AI) 활용 현황과 문제점)

  • Jong-Guk Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.181-192
    • /
    • 2024
  • With the introduction of generative artificial intelligence(AI) tools such as OpenAI's Sora into the global film industry, including Hollywood, there has been a simultaneous emergence of innovations in film production as well as various crises. These changes are spreading throughout the entire film production process, including scriptwriting, casting, editing, and acting. This study analyzes the impact of AI on the film industry, particularly Hollywood, and explores how this technology might bring about changes in Korean cinema. AI technologies applied in the film industry offer benefits such as reducing production time and costs. However, they also pose threats to many filmmakers and actors who rely on the traditional production methods, leading to ethical and legal issues. In Hollywood blockbuster films, AI technology is used to create realistic visual effects, analyze scripts, and suggest optimal shooting angles. While these applications improve the qualitative level of films, they also reduce the human resources required in traditional film production processes. The impact on the Korean film industry is also noteworthy. Some Korean film production companies are leveraging AI to create films in a more creative and efficient manner. Efforts are being made to analyze audience data using AI and develop storylines that appeal to a larger audience. However, these technological changes are controversial among many Korean filmmakers who prefer traditional production methods. This study provides an in-depth discussion on whether the adoption of AI in the film industry can bring about positive innovation or inevitably lead to crises. It analyzes how AI technology is transforming traditional roles in the film industry and what new opportunities and challenges this change generates within the industry. Additionally. This study highlights the differences in technology adoption between Hollywood and Korean film industry and explores how each industry is embracing these technological changes.

Evaluation of Application of 3D Printing Phantom According to Manufacturing Method (구성 물질에 따른 3D 프린팅 팬텀의 적용 평가)

  • Young Sang Kim;Ju Young Lee;Hoon Hee Park
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.173-181
    • /
    • 2023
  • 3D printing is a technology that can transform and process computerized data obtained through modeling or 3D scanning via CAD. In the medical field, studies on customized 3D printing technology for clinical use or patients and diseases continue. The importance of research on filaments and molding methods is increasing, but research on manufacturing methods and available raw materials is not being actively conducted. In this study, we compare the characteristics of each material according to the manufacturing method of the phantom manufactured with 3D printing technology and evaluate its usefulness. We manufactured phantoms of the same size using poly methyl meta acrylate (PMMA), acrylonitrile butadiene styrene (ABS), and Poly Lactic Acid (PLA) based on the international standard phantom of aluminum step wedge. We used SITEC's radiation generator (DigiRAD-FPC R-1000-150) and compared the shielding rate and line attenuation coefficient through the average after shooting 10 times. As a result, in the case of the measured dose transmitted through each phantom, it was confirmed that the appearance of the dose measured for phantoms decreased linearly as the thickness increased under each condition. The sensitivity also decreased as the steps increased for each phantom and confirmed that it was different depending on the thickness and material. Through this study, we confirmed that 3D printing technology can be usefully used for phantom production in the medical field. If further development of printing technology and studies on various materials are conducted, it is believed that they will contribute to the development of the medical research environment.

3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network (효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2022
  • In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extraction network. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction network that is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to the middle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solved the memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficiently configuring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, the accuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reduced image contains more detailed information than the existing method, which can further improve the reconstruction accuracy of the 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2D image but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantage that makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can be increased by increasing the diversity of information through randomness without additional shooting information. In order to objectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in the comparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs value is 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed 3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deep learning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about 27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objective performance.