• Title/Summary/Keyword: shoes insole

Search Result 55, Processing Time 0.025 seconds

Convergence Comparison of the Angle Change of Ankle Joint while Walking according to the Heel height of Insole Shoes in 20s males with Flatfoot (평발을 가진 20대 남성이 인솔구두의 굽 높이에 따른 보행 시 발목관절의 각도변화에 대한 융복합적 비교)

  • Seo, Kyo-Chul;Park, Seung-Hwan;Kim, Hyen-Ae
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.117-123
    • /
    • 2021
  • The purpose of this study is to convergence comparison the ankle joint angle change during walking of college students in their 20s with flat foot according to the heel height of insole shoes. Qualisys Track Manager Software ver. 2.8 (Qalisys Track Manager) was used for 15 college students. Functional shoes with insoles were manufactured, and the heel heights of the shoes were set to 3cm and 7cm. The subjects wore shoes with two high heels and gaited by attaching a reflex marker to the side of the ankle joint. The angle change of the ankle joint was measured in the gait stance phase. The angle of the ankle joint significantly decreased both heel strike, foot flat, midstance, and toe off to the heel height increased when the subjects with flat feet wore insole shoes. Therefore, it is thought that flat feet should wear low shoes when wearing insoles to reduce the fatigue of the soles and to walk comfortably.

The Development of the Insole for Gait Load Decreasing by Biomechanics Analysis (생체역학적 분석을 통한 보행 부하 감소용 인솔 개발)

  • Lee, Chang-Min;Oh, Yeon-Ju
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.23-30
    • /
    • 2005
  • The mailman's shoes should be designed in due consideration of occupational features they spend most of times to walk. For that reason, the shoes required functions to reduce the foot fatigue and to protect body by dispersing the body weight to the whole foot. In this research, for the functional improvement of the insole, insoles are investigated and analyzed by biomechanics experimentation. Under the base of these experimental results, we develop insoles that can reduce the body load and muscular-skeletal disorder. The pressures are concentrated on the metatarsus and heel by the result of analyzing pressure distributions of the using shoes. Accordingly, we offer the prototype functional insole that is ranked from high pressure to low pressure on the base of a shock absorb function. This prototype functional insole is examined for statistical significance by pressure distribution areas. The experimental results show that pressure areas are dispersed to whole foot, for this reason, pressures of the metatarsus and heel are reduced. Results of this research can not only improve the function of insoles which is suitable for occupational features, but also be a base on constructing data bases for biomechanics gait insoles.

Forefoot disorders and conservative treatment

  • Park, Chul Hyun;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • Forefoot disorders are often seen in clinical practice. Forefoot deformity and pain can deteriorate gait function and decrease quality of life. This review presents common forefoot disorders and conservative treatment using an insole or orthosis. Metatarsalgia is a painful foot condition affecting the metatarsal (MT) region of the foot. A MT pad, MT bar, or forefoot cushion can be used to alleviate MT pain. Hallux valgus is a deformity characterized by medial deviation of the first MT and lateral deviation of the hallux. A toe spreader, valgus splint, and bunion shield are commonly applied to patients with hallux valgus. Hallux limitus and hallux rigidus refer to painful limitations of dorsiflexion of the first metatarsophalangeal joint. A kinetic wedge foot orthosis or rocker sole can help relieve symptoms from hallux limitus or rigidus. Hammer, claw, and mallet toes are sagittal plane deformities of the lesser toes. Toe sleeve or padding can be applied over high-pressure areas in the proximal or distal interphalangeal joints or under the MT heads. An MT off-loading insole can also be used to alleviate symptoms following lesser toe deformities. Morton's neuroma is a benign neuroma of an intermetatarsal plantar nerve that leads to a painful condition affecting the MT area. The MT bar, the plantar pad, or a more cushioned insole would be useful. In addition, patients with any of the above various forefoot disorders should avoid tight-fitting or high-heeled shoes. Applying an insole or orthosis and wearing proper shoes can be beneficial for managing forefoot disorders.

A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running (달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

Characterization of Composite Frame for Enhancing Energy Harvesting Function of a Smart Shoes (스마트 슈즈의 에너지 하베스팅 기능향상을 위한 복합재료 프레임 특성평가)

  • Lee, Ho-Seok;Jung, In-Jun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.400-405
    • /
    • 2021
  • In this study, a composite material frame was designed to increase the energy harvesting efficiency of polyvinylidene fluoride (PVDF) ribbon harvesters which are installed inside smart shoes. In order to minimize the amount of deformation in the load direction of the frame, it was designed using carbon continuous fiber composites and its complex shaped structure was manufactured using a 3D printer. In order to calculate the amount of deformation of the insole and midsole of the shoes under the condition of the load generated during walking, the insole and midsole were modeled using the distributed spring elements. Using finite element analysis, the elongation of ribbon-type harvesters mounted on smart shoes was calculated during walking. It is expected that the predicted elongation of the harvester can be utilized to increase the energy harvesting efficiency of smart shoes.

Comparative Analysis of Foot Pressure Distribution by Functional Insole to be Transformed and Restored During Walking (보행 시 변형 및 복원이 가능한 인솔에 대한 족저압력 비교 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.231-241
    • /
    • 2011
  • The purpose of this study was to analyze the distribution of foot pressure generated by active materials of a functional insole. Comfort is an important consideration while selectingfootwear and insoles. Consequently, it has an influence on injury. The development of new materials for functional insoles is considered one of the more important points for their manufacture. The method adopted in this study is as follows. First, ten healthy males were selected as subjects for the study. Each subject's foof was pre-screened podoscope(Alfoots, Korea) to check for the presence of any foot abnormalities, Two kinds of equipment were used for the study: a foot pressure device from Pedar-X, Germany, and a treadmill from Pulsefitness, UK. Next, each subject was asked to test four types of insoles(insoles of outdoor shoes, indoor shoes, walking shoes, and sports shoes) via walking trials on the treadmill at a constant speed of 4.2 km/h. The pressure distribution data(contact area, maximum force, maximum peak pressure, and maximum mean pressure) was collected using the pressure device at a sampling rate of 100 Hz. Results of the tests showed that all four types of functional insoles increased contact areas whit the foot. Further, functional insoles of walking shoes and sport shoes decreased the foot pressure. From these results, we conclude that the active materials of functional insoles of shoes can increase the contact area and provide greater comfort.

Systematic Development and Effect Estimation of the Functional Insoles for Seniors (시니어전용 기능성 깔창의 체계적인 개발 및 효과분석)

  • Kim, Yong-Deok;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.184-192
    • /
    • 2015
  • Korea has already entered into an aging society. In recent decades, the health problems for seniors has received considerable interest. We often see the elderly who have been struggled from discomfort or illness of the foot. Those foot related problems mainly cause from the use of improper shoes. Recently, shoe makers sell the shoes for seniors, so called comfort shoes, but the shoes are too expensive for seniors to buy easily. In this paper, we develop cheap insoles for seniors as an alternative of the comfort shoes and suggest the systematic process for the insoles development. This systematic process is as follows: 1) Survey the literature about the market of insole, 2) Investigate the standard size of body and foot for the seniors in Korea, 3) Analyze the customer needs by survey, 4) Study the walking pattern by experiments, and 5) Develop the novel insole for the seniors to relieve the inconveniences related with foot. From the newly developed insoles, the company B gains the sales increasing effect approximately 30% over through the increase in consumer satisfaction and company reputation and secures for intellectual property rights. Using the database from Korea Research Institute of Standards and Science, the reliability of developing technology of the functional insole has been obtained. The seniors are also enable to choose an alternative of comfort shoes for foot health. In the future, the insoles developed from this study have wide applications in the medical, cosmetic fields, and leisure sports fields. Accordingly, it seems to require more systematic studies utilizing Walk Analyzer and Foot Pressure Meter.

Study on Ultra Porous Aerogel/fiber Composite for Shoe Insole (초다공성 에어로젤 함유 섬유상 복합체를 이용한 신발 안창소재에 관한 연구)

  • Oh, Kyung-Wha;Park, Soon-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.701-710
    • /
    • 2009
  • This study was conducted to develop excellent insole with good thermal insulation using new materials. We investigated that aerogel/fiber composite can be used as padding materials of shoes by comparing surface shape, moisture regain, water vapor permeability, thermal insulation and compression rate of insole materials tried with nonwoven fabric padding materials and insole sold in market. The results are as follows. Surface shapes were shown that the most appropriate material for sealing aerogel/fiber composite was high density fabric as per size of particle of aerogel. Moisture regain of aerogel/fabric composite was better than nonwoven fabric padding samples. However, when compared to insole sold in market, its moisture regain was worse than those of insole merchandises. Water vapor permeability was higher in material padded with nonwoven fabric than materials padded with aerogel/fiber composite in all three kinds of sealing fabrics. Thermal conductivity of aerogel/fabric composite was lower than nonwoven fabric material regardless of sealing fabrics. Thermal insulation of aerogel/fiber composite was higher than padding material of nonwoven fabric regardless of sealing fabrics. Compression rate of nonwoven (SP1) was higher than that of aerogel/fiber composite (SP2). Compressive elastic recovery rate of SP1 was also higher than that of SP2, which its compression rate and compressive elastic recovery rate were both poor. As the above result, ultra porous aerogel/fiber composite were proved to be material of good thermal insulation with lower thermal conductivity and also compression rate was proved to be low. Therefore, we can say that aerogel/fiber composite have high possibility to be used as insole materials for cold winter shoes requiring good thermal insulation protection.

A Study on the Therapeutic Shoes for Diabetic Patients (당뇨병 환자의 치료용 신발에 대한 연구)

  • Lee, Woo-Chun;Park, Sung-Sik
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • Purpose: To investigate the characteristics of the patients and therapeutic shoes for diabetic patients. Materials and Methods: Forty two diabetic patients who had their own therapeutic shoes which were prescribed somewhere else were studied from March 2003 to December 2003. There were 27 males and 15 females, and the mean age was 62.1 years (range, 49-72 years). Duration of diabetes was average 14 years (range, $6{\sim}30$ years), all had type 2 diabetes. Sensation was examined with 5.07 nylon monofilament. The route of purchasing the shoes, compliance to the prescribed shoes were investigated by interview. The shape of shoe, stiffness of upper, conformity of insole to the shape of the foot were recorded. In-shoe plantar pressure was measured in 15 patients. Results: Eighteen patients were insensate to the monofilament. Seven patients did not wear the therapeutic shoes, and only 18 of 35 patients were wearing the therapeutic shoes more than 6 hours a day. The shoes of 17 patients were prescribed by medical doctor and the rest were purchased by the recommendation of acquaintances or advertisement. Ulcer recurred in four of five patients to whom the shoe was prescribed by medical doctor and the cause of three recurrences were evident by just observing the foot and shoe. The therapeutic shoes were made from 11 different makers. Eight shoes were adequate for diabetic patients with respect to the material, shape of insole, type of shoe. In-shoe plantar pressure was examined in 15 patients and was less than 300 kPa in all patients. Conclusion: The therapeutic shoes for the diabetic patients need to be prescribed by medical doctor for selective patients with neuropathy or previous history of ulcer and follow-up examination is important to monitor the compliance of the patients and adequacy of the shoes.

  • PDF

Analysis of Plantar Pressure Differences between Flat Insole Trekking Shoes and Nestfit Trekking Shoes (네스핏 트레킹화와 평면 인솔 트레킹화의 족저압력 분석)

  • Choi, Jae-Won;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.475-482
    • /
    • 2015
  • Objective : The purpose of this study was to investigate mean plantar foot pressure, maximum plantar pressure and ground reaction force, and center migration path of pressure according to the type of trekking shoes for the development of shoes. Method : Subjects of the study averaged $22.10{\pm}2.05years$ of age. Their average height was $169.27{\pm}7.62cm$ and their average weight was $64.34{\pm}10.22kg$. The method of this study was administered measuring 50 steps, at once, 3 times at a speed of 4 km/h and using the data of 30 steps. Pedar-X system measured the mean foot pressure, maximum foot pressure, mean maximum force, and center migration path of pressure by subjects' position while walking. Statistical analysis was performed by SPSS 23.0 using a paired t-test. Results : Results of the study showed Nestfit trekking shoes lower foot pressure of both feet in mean foot pressure and maximum foot pressure. Nestfit trekking shoes showed high ground reaction force (p<.001) in the midfoot, and low mean ground reaction force in the rearfoot. The center migration path of pressure showed the Nestfit trekking shoes were more stable than flat insole trekking shoes. Conclusion : It can be concluded that wearing Nestfit trekking shoes spreads pressure efficiently and induces walking stability because Nestfit trekking shoes spread the pressure of the forefoot and rearfoot to the midfoot and the center migration path of pressure shows regularly.