• Title/Summary/Keyword: shock-absorbing

Search Result 117, Processing Time 0.038 seconds

Analysis of Isolation System in Distinct Multi-mechanism HIF Device (이종 복합 메카니즘 HIF 기구의 충격저감시스템 해석)

  • Choe Eui Jung;Kim Hyo-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the isolation system for multi-mechanism HIF (high impulsive force) device has been investigated. For this purpose, parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. The design parameters for multi-mechanism HIF device have been derived with respect to HIF system I and HIF system II, respectively. In order to implement the dynamic absorbing system, the dual stage hydro-pneumatic damper and magnetorheological damper with semi-active control scheme are considered. Finally, the performance of the designed prototype isolation system has been evaluated by experimental works under actual operating conditions.

Study on Damping Coefficient of Shock Absorber with Magnetic Effects (자기효과를 이용한 충격흡수장치의 감쇠계수에 관한 연구)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Hwang, Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.832-838
    • /
    • 2011
  • The shock absorber with magnetic effect is suggested for a lunar lander. The shock absorber consists of a metal tube, a piston rod, and several permanent magnets moved by a piston rod in the tube, and the shock energy can be dispersed and dissipated by magnetic effects such as the magnetic force existed between a metal and magnets and the eddy current effect generated by a relative motion with a conductor and magnets. Besides, the shock-absorbing effect similar to that of a coil spring can be obtained by arranging the magnets in line, which are facing the same polar each other. The device has a very simple structure and is usable in space due to the unnecessariness of any oil or gas. The shock absorber was designed and manufactured for experiments and its spring and damping characteristics were studied by the theoretical, analytical and experimental methods.

An Experimental Study on the Improvement of City Gas Buried Double Piping Integrity (도시가스 매설이중배관 건전성 향상에 관한 실험적 연구)

  • Lim, Hyung-Duk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.757-763
    • /
    • 2020
  • City gas buried pipes are managed by corrosion protection to prevent corrosion. In the case of the press-in section, the double pipe and the main pipe may cause corrosion under the influence of stray current, which can shorten the life of the pipes. In addition, if the insulator is filled in the press-in section, the press-in section itself is a single structure, and can be directly affected by external impact, and when the surrounding ground subsidence occurs, the stress may be concentrated, resulting in serious consequences. In this study, a serration-type shock absorber in the form of a sliding support was proposed as a new buried double piping construction method using EPS. The serration-type shock absorber can contribute to the improvement of the integrity of the buried double piping, as it can utilize the gas piping's own ductility and stress distribution characteristics with proper anti-corrosion management and shock-absorbing material properties by preventing contact inside the buried double pipe. However, for application to ground piping, there remains a task to supplement the vulnerability against fire due to the characteristics of EPS materials.

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

A STUDY ON THE SHOCK-ABSORBING BEHAVIOR OF RESTORATIVE MATERIALS AND INTERMOBILE CONNECTOR USEDIN IMZ IMPLANTS (수복재료와 내가동연결장치가 IMZ 임프란트 보철물의 충격흡수효과에 미치는 영향)

  • Lee, Su-Jeong;Chung, Chan-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.118-129
    • /
    • 1997
  • The purpose of this study was to evaluate the shock absorbing effect of 4 restorative materials and intramobile connector. The damping effect of four restorative materials used to veneer test crown rigidly connected to IMZ implant and subjected to an impact force was measured. These materials included a gold alloy(stabilor G) : a noble metal ceramic alloy(Degudent H) : porcelain(Duceram) : composite resin(Dentacolor). In addition, this study compared damping effect of same restoretive materials after using polyoxymethylene intramobile connector(POM IMC). The result of this study suggest that : In case of using metal IMC 1. Veneered composite resin(group IV) reduced the impact force by 75%, when compared to an equivalent thickness of porcelain(group III). Group IV reduced the impact force by 87% and 89%, respectively, when compared to Stabilor G(group I) and Degudent H(group II). 2. The impact force recorded was higher for the alloy with the higher elastic modulus.(Stabilor G, group I, Young's modulus 107 Gpa, versus Degudent H, Group II, Young's modulus 95 Gpa) 3. It took the longest time for composite resin veneered group(IV) to reach to peak force when compared group I, II, III. In case of using POM IMC 4. The mean impact force recorded were reduced by 79%(group I), 78%(group II), 69%(group III), 84%(group IV), respectively, when compared to using metal IMC. 5. The time required to reach the peak force were increased by 78%(group I, II) 87%(group III), 34%(group IV), respectively, when compared to using metal IMC>.

  • PDF

Evaluation of Shock-Absorbing Performance of Three-Different Types of Bicycle Suspension Systems (자전거에서 서스펜션 종류에 따른 인체영향 시뮬레이션)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Kim, Sa-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.943-946
    • /
    • 2010
  • In this study, a front suspension system, which is mounted on the handle itself, was suggested because of its light weight and cost efficiency. The shock absorption was evaluated for the three types of suspension models; non-suspension, suspension on front forks (existing model), and suspension on handle (suggested model). The human body model was used for performing impact simulation for comparing the shock absorption for the suspension models. The result of the simulation shows that shock absorption for the proposed suspension model was not as good as that for the front fork suspension model. Nevertheless, the shock absorption observed for the proposed suspension model was significant when compared to the non-suspension model. Consequently, the proposed suspension model could be applied to lightweight bicycles.

Mechanical Characteristics for Pulp Molds Made of ONP and OCC with Different Mixing Ratio (고지배합비율에 따른 펄프몰드 물성 변화 연구)

  • Park, In-Sik;Kim, Jae-Nung;Kim, Dae-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.04a
    • /
    • pp.285-297
    • /
    • 2007
  • As the demands of environment protection increase, the pulp mold container is developed to substitute for the plastic cushion materials like EPS(expanded poly styrene). The water-absorbing ratio, tensile strength and compressive strength of pulp mold are important factors to evaluate its shock absorbing characteristics. The study was performed to investigate the effects of the mechanical property changes on the various conditions of temperature and relative humidity for pulp mold containers made of mixed materials on ONP(old newspaper) and OCC(old corrugated container). This study also is evaluated the optimized mixing ratio of materials for making pulp mold by analyzing the changes of physical properties according to a various procured temperature and relative humidity conditions. The results show that the water absorption ratio of sample increased significantly, and tensile strength decreased $20{\sim}30%$, compressive strength decreased $10{\sim}20%$ by increasing relative humidity condition. And the results show that the ONP 50% and OCC 50% was optimized mixing ratio according to the samples.

  • PDF

Evaluation of the Dynamic Characteristics of Rubber Structure under Impact Force (충격하중을 받는 고무구조물의 동특성 평가)

  • Kim, Wan-Doo;Kim, Dong-Jin;Lee, Young-Shin
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.40-48
    • /
    • 2006
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. In the finite element analysis, elastic modulus of rubber using impact force was used as dynamic modulus, which are measured and predicted with dynamic property test and WLF model. The analysis result was coincided with the experimental results.