• Title/Summary/Keyword: shock-absorbing

Search Result 117, Processing Time 0.026 seconds

Design of Elastomeric Bearing System and Analysis of it Mechanical Properties

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Cho, Dae-Seung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.20-29
    • /
    • 2004
  • This paper proposes a new type of bearing system. In this study, a method for design of on elastomeric bearing system and its mechanical property analysis are carried. Experimental and theoretical studies of the elastomeric bearings with fiber reinforcement were proved effective new lightweight bearing system. The fibers in the bearings for isolation are assumed to be flexible in extension, in contrast to the steel plates in the conventional bearing system. Several kinds of bearing systems in the form of long strips are designed, fabricated and tested. The results suggest that it is possible to produce the economical and effective fiber-reinforced elastomeric bearing that matches the behavior of a steel-reinforced bearing. Feasibility and advantages of the proposed bearings are illustrated by the application of the analytic procedure to the structure system. Results obtained here are reported to be an efficient approach with respect to bearing system and design of bearing against shock absorbing system when compared with other conventional one.

Development of Environment-friendly Cushioning Materials by Pulping of Waste Residual Woods (폐잔재의 펄프화를 통한 환경친화적 완충소재의 개발)

  • Lee, Young-Min;Kim, Chul-Hwan;Kim, Jae-Ok;Kim, Gyeong-Yun;Shin, Tae-Gi;Song, Dae-Bin;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.61-71
    • /
    • 2006
  • Environment-friendly shock-absorbing (cushioning) materials were made using a vacuum forming method from waste wood collected from local mountains in Korea. The waste wood was pulped by thermomechanical pulping. The TMP cushions showed superior shock-absorbing properties with lower elastic moduli compared to EPS(Expanded Polystyrene) and pulp mold. Even though the TMP cushions made using at different suction times had many free voids in their inner fiber structures, their apparent densities were a little higher than EPS and much lower than pulp mold. The addition of cationic starch improved elastic modulus of the TMP cushions without increasing the apparent density, which was different from surface sizing with starch. The porosity of the TMP cushions was a little greater than EPS and much less than pulp mold. Finally, the TMP cushions have great potential to endure external impacts occurring during goods distribution.

Effect of Water Volume and Relaxation Time in the Design of Nano Shock Absorbing Damper Using Silica Particle (실리카 분말을 이용한 나노 충격완화 장치의 설계에서 작동 유체 영향과 복원 시간에 대한 연구)

  • 문병영;김병수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.286-292
    • /
    • 2003
  • In this study, new shock absorbing system was proposed using silica gel particles according to the nano-technology. For the design and real application of the proposed damper, an experimental investigations are carried out using colloidal damper, which is statically loaded. The porous matrix is composed from silica gel(labyrinth architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis were described. Iufluence of the water volume and particle diameters upon the reversible colloidal damper hysteresis was investigated. Also, influence of the relaxation time on the hysteresis of the damper was investigated. As a result, the proposed new shock absorbing damper is proved as an effective one, which can be replaced for the conventional hydraulic damper.

Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products (농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가)

  • Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • From the time the product is manufactured until it is carried and ultimately used, the product is subjected to some form of handling and transportations. During this process, the product can be subjected to many potential hazards. One of them is the damage caused by shocks. In order to design a product-package system to protect the product, the peak acceleration or G force to the product that causes damage needs to be determined. When a corrugated fiberboard box loaded with products is dropped onto the ground, part of the energy acquired due to the action of the gravitational acceleration during the free fall is dissipated in the product and the package in various ways. The shock absorbing characteristics of the packaging cushion materials are presented as a family of cushion curves in which curves showing peak accelerations during impacts for a range of static loads are shown for several drop heights. The new method for determining the shock absorbing characteristics of cushioning materials for protective packaging has been described and demonstrated. It has been shown that cushion curves can be produced by combining the static compression and impact characteristics of the material. The dynamic factor was determined by the iterative least mean squares (ILMS) optimization technique in which the discrepancies between peak acceleration data predicted from the theoretical model and obtained from the impact tests are minimized. The approach enabled an efficient determination of cushion curves from a small number of experimental impact data.

  • PDF

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

The Development of Pulp Mold Tray for Melon Packaging (멜론 포장용 펄프몰드 난좌 개발)

  • Choi, Seung Ryul;Jung, Hoon;Choi, Dong Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • In order to protect agricultural products against damage by physical load, various shock absorbing materials is used. As the demands of environment protection increase, the use of plastic materials have been restricted. On the other hand, Pulp mold products have some benefits - easy manufacturing, superior shock absorbing and eco-friendly. In order to develop pulp mold tray for melon packaging as shock absorbing packaging material, we investigated physical properties and vibration transmission characters of 180, 200 and 220 g pulp mold tray for melon. As the weight of pulp increased, compression strength and shock absorbing performance increased, while vibration transmissibility decreased. Especially in case of 180g pulp mold tray, it is not suitable for melon packaging because the transmitted vibration acceleration was higher than the forced vibration acceleration. And 200g pulp mold tray is suitable for melon packaging because the vibration transmissibility was lowest in three trays. And the vibration acceleration transmitted to the melon in edge of pulp mold tray was higher than to the melon in center of pulp mold tray. As the result of the simulated transportation test, the firmness of melon packaging using pulp mold tray was higher than that of conventional packaging. Therefore, these results suggest that pulp mold tray packaging could be suitable for melon packaging.

  • PDF

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials (전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구)

  • Younghun Ko
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.