• Title/Summary/Keyword: shock formation

Search Result 177, Processing Time 0.023 seconds

COSMIC SHOCK WAVES ON LARGE SCALES OF THE UNIVERSE

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.25-26
    • /
    • 1996
  • In the standard theory of the large scale structure formation, matter accretes onto high density perturbations via gravitational instability. Collision less dark matter forms caustics around such structures, while collisional baryonic matter forms accretion shocks which then halt and heat the infalling gas. Here we discuss the characteristics. roles, and observational consequences of these accretion shocks.

  • PDF

SPH Simulations of Barred Galaxies: Evolution of Nuclear Rings

  • ANN H. B.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.261-263
    • /
    • 2001
  • Numerical simulations based on the smoothed particle hydrodynamics (SPH) is performed to investigate the dynamical properties of barred galaxies that have nuclear rings. The nuclear ring morphology depends on the relative strength of bar potentials. Nuclear rings form between the two ILRs and align perpendicular to the bars unless the bar potentials are strong enough to allow the x1 orbits near the ILRs. Shock dissipation plays a critical role in the formation of nuclear rings.

  • PDF

SPH models of the interactions in Stephan's Quintet

  • Hwang, Jeong-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2011
  • We present smoothed particle hydrodynamic models of the interactions in the compact galaxy group, Stephan's Quintet. Adding thermohydrodynamic effects to the earlier collisionless N-body simulations of Renaud et al. (2010), we further investigate the dynamical interaction history and evolution of the intergalactic gas of Stephan's Quintet. Specifically, we model the formation of the hot X-ray gas, the group-wide shock, and emission line gas as the result of NGC 7318b colliding with the group as well as reproduce the tidal structures in the group. We compare our model results to multi-wavelength observations.

  • PDF

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

The Formation of Detonation Wave and Acceleration Characteristics with the Ram Accelerator Projectile Shapes (램 가속기 탄체 형상에 따른 데토네이션파와 가속 특성에 관한 연구)

  • 전용희;이재우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.82-91
    • /
    • 1999
  • Projectile shapes of the superdetonative ram accelerator have great effects on shock structures, detonation wave formation, and ram acceleration characteristics. In this study, cone-cylinder-cone, a baseline projectile configuration of the superdetonative combustion mode, double-cone configurations and power-law shape, have been numerically investigated to analyze the effect of the front/rear configuration changes, on the flow field around the projectile, detonation wave formation process, and projectile acceleration characteristics. Hence, a ram projectile configuration with conspicuously improved acceleration characteristics has been proposed by adjusting the double cone angle and height. The results provide useful information for the ram accelerator design optimization study.

  • PDF

KINEMATICS AND CHEMISTRY OF THE S140/L1204 MOLECULAR COMPLEX

  • Park, Yong-Sun;Minh, Young-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.255-264
    • /
    • 1995
  • The HII region S140 and the associated molecular cloud L1204 have been observed with 10 molecular transitions, CO (1-0), $^{13}CO$ (1-0), $C^{18}O$ (1-0), CS (2-1), $HCO^+$ (1-0), HCN (1-0), SO (${2_2}-{1_1}$), $SO_2(2_{20}-3_{13})$, OCS (8-7), and $HNCO\;(4_{04}-3_{03})$ with ${\sim}50"$ angular resolutions. More than 7,000 spectra were obtained in total. The morphology of this region shows a massive fragment (the S140 core) and the extended envelope to the northeast. Several gas condensations have been identified in the envelope, having masses of ${\sim}10^{3}M_{\odot}$ and gas number densities of ${\lesssim}10^{4}cm^{-3}$ to $3{\times}10^{5}cm^{-3}$ in their cores. The column densities of the observed molecular species toward the S140 core appear to be the typical warm clouds' abundances. It seems to be that the S140 core and L1204 have been swept up by an expanding shell called the Cepheus bubble. The large value of $L_{IR}$(embedded\;stars)/$M_{cloud}\;{\sim}\;5\;L_{\odot}$/$M_{\odot}$ of the S140 core may suggest that the star formation has been stimulated by the HII region, but the shock velocity and the pressure of the region seem to give a hint of the spontaneous star formation by the self gravity.

  • PDF

An Evaluation of Critical Speed for Draft Gear using Variable Formation EMU (도시철도차량의 가변편성을 고려한 고무완충기의 임계속도 평가)

  • Cho, Jeong Gil;Kim, Y.W.;Han, J.H.;Choi, J.K.;Seo, K.S.;Koo, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.139-143
    • /
    • 2019
  • In this study, we tried to derive the most severe scenario and its critical speed by 1-D collision simulation with a variable formation vehicle in order to prepare for the change of demand in Seoul Metropolitan Subway Line 3, which is operated by fixed arrangement. After establishing various collision scenario conditions, the friction coefficient between the wheel and the rail was evaluated as 0.3, which is considered to be severe. As a result of analysis according to all scenarios, the most severe scenario conditions were confirmed by comparing rubber shock absorber performance and vehicle collision deceleration. In addition, a typical wheel-rail friction coefficient was derived through accident cases, and the analysis was performed again and compared. Finally, the criterion of the critical speed in the condition of the friction coefficient of the normal wheel - rail condition was confirmed.

보혈안신탕(補血安神湯), 가미보혈안신탕(加味補血安神湯)의 항(抗) stress효과(效果)에 관(關)한 실험적(實驗的) 연구(硏究)

  • Lee Dong-Jin;Kim Ji-Hyeok;Hwang Ui-Wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.4 no.1
    • /
    • pp.77-97
    • /
    • 1993
  • Human and animals are living by acclimation to environmental changes like high and cold temperature, nose, confinement, etc. If the above changes reach a defined levels, some physiological abnormal state could appear, which we call them as stress state. Catecholamines are excreted by the sympathetic-adrenomedullary system in free from in urine. Catecholamines are derived from the adrenal medulla and urinary epinephrine can be taken as a rough estemation of the activity of this gland. Many scientist reported the endocrinological change, excretion of catecholamine and its metabolites, stomach ulcer formation, etc. under the condition of the confinement and high temperature. In this study author gave restraint, electric shock and immersion stress to rats by administrating by HPLC and got the following results. 1. In the restriant experiment, epinephrine contents in control rat was 194.7 ng, but in Bohyulanshintang administered rat urine 198.9 ng of epinephrine was found. 2. In the electrical shock experiment, 199.5 ng of epinephrine was found in the control rat urine, but in Bohyulanshintang administered rat urine epinephrine content was 142.4 ng. 3. Dopamine contents in control rat urine the immersion environment was 118.9 ng, but in Bohyulanshintang administered rat urine only 55.2 ng of dopamine was found. 4. Incontrol rat stomach there appeared focal erosion and inflamatory exudate, but in experimental group these symptom were turned to mild condition.

  • PDF

Comparison of Degradation Behaviors for Titanium-based Hard Coatings by Pulsed Laser Thermal Shock

  • Jeon, Seol;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.523-527
    • /
    • 2013
  • Ti-based coatings following laser ablation were studied to compare degradation behaviors by thermomechanical stress. TiN, TiCN, and TiAlN coatings were degraded by a Nd:YAG pulsed laser with an increase in the laser pulses. A decrease in the hardness was identified as the pulses increased, and the hardness levels were in the order of TiAlN > TiCN > TiN. The TiN showed cracks on the surface, and cracks with pores formed along the cracks were observed in the TiCN. The dominant degradation behavior of the TiAlN was surface pore formation. EDS results revealed that diffusion of substrate atoms to the coating surface occurred in the TiN. Delamination occurred in the TiN and TiCN, while the TiAlN which has higher thermal stability than the TiN and TiCN maintained adhesion to the substrate. It was considered that the decrease in the hardness of the Ti-based hard coatings is attributed to surface cracking and the diffusion of substrate atoms.

On the two phase detonation in carbon laden oxygen : taking into account of inner particle temperature distribution (입자온도 분포를 고려한 탄소입자와 산소에서의 이상폭발현상에 관한 연구)

  • 승성표;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1104-1112
    • /
    • 1988
  • In this study the structure of a two phase detonation has been numerically investigated through the assumption of a steady and one-dimensional flow in the suspension of carbon particles and pure oxygen. The bow shock formation in front of carbon particles has been taken into consideration when the relative velocity of gas flow with respect to the particle exceeds the local speed of sound. But its effect was found to be very limited to the induction zone only. Furthermore the interior particle temperature distribution has been considered in this work. It was found that the inner temperature gradient was very steep in the region of high relative velocity. On the while the temperature distribution inside the particle was almost uniform in the region of low relative velocity. Overall, the effect of the interior particle temperature distribution has been significant in the two phase detonation.