• Title/Summary/Keyword: shock energy

Search Result 512, Processing Time 0.027 seconds

HEATING OF SUNSPOT CHROMOSPHERES BY SLOW-MODE ACOUSTIC SHOCK WAVES

  • Lee, Myung-Gyoon;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.18 no.1
    • /
    • pp.15-31
    • /
    • 1985
  • Making use of the arbitrary shock theory developed by Ulmschneider (1967, 1971) and Ulmschneider and Kalkofen (1978), we have calculated the dissipation rates of upward-travelling slow-mode acoustic shock waves in umbral chromospheres for two umbral chromosphere models, a plateau model by Avrett (1981) and a gradient model by Yun and Beebe (1984). The computed shock dissipation rates are compared with the radiative cooling rate given by Avrett (1981). The results show that the slow-mode acoustic shock waves with a period of about 20 second can heat the low umbral chromospheres travelling with a mechanical energy flux of $2.6{\times}10^6\;erg/cm^2s$ at a height of $300{\sim}400km$ above the temperature minimum region.

  • PDF

A Study on the Shock Wave Caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 충격파 고찰)

  • Leem, Sa-Hwan;Lee, Jong-Rark;Huh, Yong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

A Study on the Shock Wave caused by VCE in Enclosure (밀폐공간에서의 VCE에 의한 충격파 고찰)

  • Leem, Sa-Hwan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In order to establish detailed plans for fire protection and reduce the possible fire accidents in the future, a study on the shock wave caused by VCE(Vapor Cloud Explosion) is very important. Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. Therefore, the propagation progress of shock wave and flame is very important. This study investigated the shock wave caused by VCE in enclosure with opened vent port. From a result, the vent port of top at the straight line of ignition and leak location was opened most rapidly, and the vertical vent port not opened.

  • PDF

A Study of the ER Insert for Reducing the Shock Wave (충격파 차단을 위한 ER Insert의 기초 연구)

  • Kim, Jung-Yeob;Jung, Jae-Min;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.612-618
    • /
    • 2000
  • The underwater explosion which has the high energy brings about the shock wave and the pulsating gas bubble. In general, structural vibration from the shock wave is more serious than the pulsating gas bubble. This shock wave may damage the important fragile structures and equipment in ship. This paper demonstrates that the shock wave propagating the structure can be reduced by ER inserts. The wave transmission of ER inserted beam is theoretically derived using Mead & Markus model, and the theoretical results are composed with the finite element analysis results. To experimentally verify the ER insert, ER insert in an aluminum plate is made and two piezoceramic disks are used as transmitter and receiver. Details of the experiment are addressed.

  • PDF

A Statistical Analysis on the Electric Shocks in 2014 (2014년 감전사고 통계 분석)

  • Hong, Eun-Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.171-179
    • /
    • 2015
  • As the industrial scale is getting enlarged and the people's quality of life is growing, the electric energy consumption has been rapidly increasing every year and the frequency of electrical accidents such as electrical shock This paper gives statistical analysis of the number of casualties caused by the electrical shock, five hundred people every year, but it still exceeded the shaping risk of electrical accidents to anyone in KOREA. In this paper, for the electrical shock of the in 2014 act by occupation, voltage electrical equipment, location, accident type and months. In order to acquire electrical shock in 2014, we visited police stations and hospitals and analyzed records of accidents. The result showed that the electrical shock alone caused 37 people deaths and 569 injuries.

Transient Shock Waves in Supersonic Internal Flow

  • Suryan, Abhilash;Shin, Choon-Sik;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.357-361
    • /
    • 2010
  • When high-pressure gas is exhausted through nozzle exit to the atmosphere, expanded supersonic jet is formed with the Mach disk at a specific condition. In two-dimensional supersonic jets, the hysteresis phenomenon of the reflected shock waves is found to occur under quasi-steady flow conditions. Transitional pressure ratio between the regular reflection and Mach reflection in the jet is affected by this phenomenon. In the present study, experiments are carried out on internal flow in a supersonic nozzle to clarify the hysteresis phenomena for the shock waves and to discuss its interdependence on the rate of the change of pressure ratio with time. Flow visualization is carried out separately on the straight and divergent channels downstream of the nozzle throat section. The influence that the hysteresis phenomena have on the location of shock wave in a supersonic nozzle is also investigated experimentally.

  • PDF

Acoustic outputs from clinical ballistic extracorporeal shock wave therapeutic devices (임상에서 사용중인 탄도형 체외충격파 치료기의 음향 출력)

  • Cho, Jin Sik;Kwon, Oh Bin;Jeon, Sung Joung;Lee, Min Young;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.570-588
    • /
    • 2022
  • We scrutinized the acoustic outputs from the 70 shock wave generators of the 15 product models whose technical documents were available, among the 46 ballistic extracorporeal shock wave therapeutic devices of 11 domestic and 6 foreign manufacturers, approved by the Minster of Food & Drug Safety (Rep. Korea). We found that the acoustic Energy Flux Density (EFD), the most popular exposure parameter, was different by up to 563.64 times among shock wave generators at their minimum output settings and by up to 74.62 times at their maximum settings. In the same product model, the EFD was shown to vary depending on shock wave transmitters by up to 81.82 times at its minimum output setting and by up to 46.15 times at its maximum setting. The lowest EFD 0.013 mJ/mm2 at the maximum output settings was much lower (2.1 %) than the maximum value 0.62 mJ/mm2 at the minimum settings. The Large acoustic output differences (tens to hundreds of times)from the therapeutic devices approved for the same clinical indications imply that their therapeutic efficacy & safety may not be assured. The findings suggest the regulatory authority to revise her guideline to give clearer criteria for clinical approval and equality in performance, and recommend the authority to initiate a post-approval surveillance as well as a test in conformance between the data in technical documents and the real acoustic outputs clinically used.

The Analysis of Cushioning Properties of Corrugated Cushion (골판지를 이용한 완충 포장재의 물리적 특성에 관한 연구)

  • Choi, Seung-Jin;Shin, Joong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Cushioning systems, which are cushion material and its designed configuration, are important to protect fragile items since they act as buffers between the impact force and the fragile product. As cushioning materials, several plastic foams are commonly used in industry. However, the utilization of the plastic material has been causing a solid waste problem and pollution. Thus, as an alternative cushion material to the plastic foams, a corrugated cushion, which is considered environmentally friendly and cheap material, was put into drop tests and its impact shock attenuation was investigated. Flat and free drop data were recorded and compared to the dynamic shock of EPS cushion. In addition, the mathematical model of the shock attenuation of the corrugated cushion was developed. The result showed that the corrugated cushion gave an excellent protection for items that were subjected to the limited number of drops. There was no significant difference of the shock absorbing ability between the EPS and corrugated cushions. Energy density model of cushioning material successfully explained the mechanical behavior and fatigue of the corrugated cushions.

  • PDF

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

Determination of Shock Response Spectrum Using FRF of Statistical Energy Analysis Method (통계적 에너지 분석법의 FRF를 이용한 충격 응답 스텍트럼(SRS)의 결정)

  • 구성완;황철규;김인성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.551-560
    • /
    • 2004
  • A method how to determine the shock response spectrum from the FRF of the statistical energy analysis( SEA ) is presented here. The system of 3 different Plates connected by bolt joints is selected simulating missile structural sections Joined together. First, the SEA model was rendered by SEA parameters which were determined from experimental SEA method. Then, the mobility power was input to the SEA model and we can verify the validity of the model in the medium to high frequency range checking the reproduction of output average velocity. And, the shock induced shock response spectrum(SRS) was obtained using SEA FRF and arbitrarily chosen experimental FRF. We have compared the thus obtained SRS with actually measured SRS and they were relatively in good agreement. In this paper, we used the measured SEA FRF and therefore we have got the SRS well agreed with actually measured SHS even in the low frequency range. If the SEA FRF of well verified SEA model is used, the good result will come out in SEA effective frequency range which is more important at SRS.