• Title/Summary/Keyword: shock(충격파)

Search Result 730, Processing Time 0.028 seconds

Numerical Visualization of the Shock Wave System Discharged from the Exits of Two-Parallel Ducts (두 평행한 관 출구로부터 방출되는 충격파시스템의 수치해석적 가시화)

  • Jung Sung Jae;Kweon Yong Hun;Kim Heuy Dong;Kang Chang Soo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.72-75
    • /
    • 2004
  • The present study describes a computational work to investigate detailed behaviors of the twin shock waves discharged from the exits of two-parallel ducts. In computations, the Yee-Roe-Davis's TVD scheme was used to solve the unsteady, three-dimensional, inviscid, compressible, Euler equations. The distance between two ducts is varied and the Mach number of the incident shock wave is changed below 2.0. The results obtained show that on the symmetric axis between two-parallel ducts, the maximum pressure achieved by the merge of twin shock waves and its location strongly depend upon the distance between two-parallel ducts and the Mach number of the incident shock wave. It is also found that the twin shock waves discharged from the exits of two-parallel ducts leads to the complicated flow fields, such as Mach stem, spherical waves, and vertical structures.

  • PDF

On the Five Submodels in Shock-Vortex Interaction (충격파-와동 간섭을 구성하는 다섯 가지 소모델에 대하여)

  • Chang Keun-Shik;Chang Se-Myong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.126-131
    • /
    • 2001
  • 충격파-와동 간섭은 다양한 비선형 물리 현상을 포함한다. 그 중에서도, 충격파 분리와 충격파-충격파 간섭에 대해서는 잘 알려져 있는 반면, 미끄럼 층에서 반사되는 파동이나 관통 충격파 등에 대해서는 지금까지 적절한 연구가 이루어지지 못했다. 저자들은 복잡한 충격파-와동 간섭이 시간에 따라 몇 개의 국지적인 소모델 (submodels)로 귀착됨을 발견하였다. 이는 와동에 의한 충격파의 분리, 충격파-충격파 간섭, 충격파-미끄럼층 간섭, 와동 중심의 충격파통과, 그리고 충격파-소와동 간섭이다. 이러한 5 개의 소모델은 탐구 범위 내에서 충격파-와동 간섭의 전체 구조를 구성한다.

  • PDF

Numerical Simulation of the Effect of Finite Diaphragm Rupture Process on Micro Shock Tube Flows (Micro shock tube 유동에 대한 유한 격막 파막과정의 영향에 관한 수치 해석적 연구)

  • Arun Kumar, R.;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.37-46
    • /
    • 2013
  • Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.

A NUMERICAL STUDY ON THE CAVITATION BUBBLE-SHOCK INTERACTION (캐비테이션 기포와 충격파의 간섭에 관한 연구)

  • Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.185-187
    • /
    • 2009
  • A density based method with homogeneous cavitation model to investigate cavitation-bubble collapsing behavior is proposed and applied to bubble-shock interaction problems. By applying this method, cylindrical bubbles located in the liquid and incident liquid shock wave are computed. Bubble collapsing behavior, shock-bubble interaction and shock transmission/reflection pattern are investigated.

  • PDF

Measurement of Sounds Radiated of Phantom Piezoelectric Extracorporeal Shock Wave Lithotripter and Their Analysis (체외 충격파 결석 파쇄 장치에 의한 대상물 파쇄시의 발생음의 측정과 해석)

  • Jang, Yun-Seok;Park, Mu-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.36-40
    • /
    • 1997
  • The effectiveness of Extracorporeal Shock Wave Lithotripter(ESWL) for the therapy of calculus has been generally known in the field of urology. However, there are very little paper investigated about physical characteristics of sounds radiated when phantom is shotting with shock waves. Therefore, this paper, firstly, investigates the sounds radiated when impact is applied to the phantom with a single shot by an impact hammer and a clinical ESWL Next, it determines the variance of the sounds radiated during the breaking process using a piece of chalk as a phantom of a calculus. These results will be applied to the examination of the existence of the calculus at the focus and the monitoring the breaking process.

  • PDF

Study on the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.21-29
    • /
    • 2002
  • In the present study, a passive control method, using a porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible, Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwin-Lomax model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure loss of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock wave/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil as well. It is also found that the location of the porous ventilation significantly affects the control effectiveness.

Design of Polymer Composites for Effective Shockwave Attenuation (충격파 완화 복합재의 설계)

  • Gyeongmin Park;Seungrae Cho;Hyejin Kim;Jaejun Lee
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • This review paper investigates the use of shockwave attenuating materials within composite structures to enhance personnel protection against blast-induced traumatic brain injury (bTBI). This paper also introduces experimental methodologies exploited in the generation and measurement of shockwaves to evaluate the performance of the shock dissipating composites. The generation of shockwaves is elucidated through diverse approaches such as high-energy explosives, shock tubes, lasers, and laser-flyer techniques. Evaluation of shockwave propagation and attenuation involves the utilization of cutting-edge techniques, including piezoelectric, interferometer, electromagnetic induction, and streak camera methods. This paper investigates phase-separated materials, including polyurea and ionic liquids, and provides insight into composite structures in the quest for shockwave pressure attenuation. By synthesizing and analyzing the findings from these experimental approaches, this review aims to contribute valuable insights to the advancement of protective measures against blast-induced traumatic brain injuries.

The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate (관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구)

  • 이동훈;김희동;강성황
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

충격파 불안정성을 제거한 Roe 수치기법 (A Shock Stable Roe Scheme)

  • Kim Sung-soo;Kim Chongam;Rho Oh-Hyun;Hong Seung Kyu
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.43-53
    • /
    • 2001
  • 본 논문은 충격파 불안정성이 나타나지 않는 충격파 안정적인 수치기법의 개발을 목표로 하고 있다. Roe의 수치기법은 유동의 수치계산에 있어 높은 정확도를 보장하지만 carbuncle 현상과 같은 충격파 불안정성이 나타나는 것으로 알려져 있다. Roe의 수치기법과 HLLE 수치기법의 수치점성을 비교하여 충격파 불안정성의 원인을 살펴보았으며, Roe의 수치기법에 나타나는 반감쇠항에 마하수의 함수인 조절함수 f와 g를 도입하여 충격파 안정성을 획득하였다. 본 논문에서 제안된 수치기법을 다양한 유동문제에 적용하여 수치기법의 충격파 안정성과 정확성을 검증하였다

  • PDF

Shock Wave Phenomena in Fluid Engineerings(I) (유체공학에서 충격파현상(1))

  • 김희동
    • Journal of the KSME
    • /
    • v.34 no.12
    • /
    • pp.961-976
    • /
    • 1994
  • 오늘날, 충격파현상은 유체공학, 기계공학, 항공우주공학, 물리화학, 천체물리 등은 물론, 의학분 야에서도 광범위하게 사용되고 있는 기초적 물리현상으로서, 그 중요성과 더불어 장차 발전과 여러 분야에서의 응용이 크게 기대되고 있다. 이 글에서는 충격파현상에 대한 연구의 실례와 장래의 충격파 연구에 대하여 전망하고, 충격파 연구에 주로 사용되고 있는 충격파의 발생장치에 대해서 기술하고자 한다.

  • PDF