• Title/Summary/Keyword: shipbuilding, structural design

Search Result 108, Processing Time 0.02 seconds

Development of Automated Algorithm for Compartment Arrangement of Oil Tanker (유조선의 구획배치 자동화 알고리즘 개발)

  • Song, Ha-Cheol;Na, Seung-Su;Jo, Du-Yeon;Shim, Cheon-Sik;Lee, Gang-Hyeon;Jeong, Sol;Heo, Joo-Ho;Jeong, Tae-Seok;Lee, Chul-Ho;Jo, Young-Chun;Kim, Dong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.59-68
    • /
    • 2013
  • Nowadays, optimum structural design techniques based on CSR have been developed and applied to the preliminary design stage focused on minimum weight and minimum construction cost of ship structure. Optimum structural design algorithm developed before could minimize weight and cost on fixed compartment arrangement. However, to develop more efficient design technique, a designer needs to combine optimized compartment arrangement with optimized ship structural design because compartment arrangement has a large effect on structural design according to the change of still water bending moment as a consequence of compartment arrangement change. In this study, automated algorithm for compartment arrangement of an oil tanker is developed to apply preliminary structural design. The usefulness of developed algorithm is verified with Aframax oil tanker constructed by STX shipbuilding Co.Ltd..

Hull Structural Design of A 300,000 DWT Double Hull VLCC

  • Bong, Hyon-Soo;Yoo, In-Sang;Oh, Yeong-Tae
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.89-110
    • /
    • 1995
  • The enactment of OPA90 (Oil Pollution Act of 1990) in the USA and the consequent moves by IMO(International Maritime Organization) to introduce new Regulations for the design of oil tankers led the oil transportation industry to undergo a period of big change. This resulted in the introduction of double hull tankers. This paper introduces the design for the 300, 000 DWT double hull VLCC of World-Wide Shipping Agency Pte Ltd. in Hong Kong, which is the first of this type constructed by Daewoo Shipbuilding & Heavy Machinery Ltd.(DSHM). The characteristics of the compartment and structural arrangement of this vessel are briefly described, and the scope of structural analysis is illustrated. In addition, the merits/demerits of different crosstie arrangements are described in the appendices.

  • PDF

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Design and Structural Analysis of Dry Dock Gate (드라이도크 게이트의 설계 및 구조해석)

  • Park, Joo-Shin;Ahn, Hwan-Jin;Jung, Gil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.325-331
    • /
    • 2008
  • Recently, new shipbuilding yards with medium capacity are established due to influence of prosperous condition no shipbuilding industry in Korea. These shipbuilding yards have characteristics such as high capacity facilities and followed system of dock launching just like major shipbuilding yards. The present paper explains the dry dock design and structural strength analysis by using FEM. The design stage used TRIBON M3 system while the estimation of structural strength used ANSYS Multiphysics module. The dry dock gate did not frequently open and close, it had to sustain against external wave load during building a ship. Moreover, documents related to design of dry dock gate have no guidelines about design criterion and process of structural strength calculation. It is necessary to make the guidelines about design of dry dock gate. It is expected that this paper will be a good reference to the design of dry dock gate.

  • PDF

Optimum Design for Longitudinal Strength Members of Double Hull Tankers with Central Long'l Bulkhead considering Buckling Thickness Requirement of Plate Panels based on Common Structural Rules (CSR기반 좌굴 두께 요건을 고려한 이중선체유조선의 종방향 구조부재의 최적설계 연구)

  • Jo, Young-Chun;Lee, Jung-Chul;Lee, Sang-Bock;Shin, Sung-Kwang;Jang, Chang-Doo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.117-126
    • /
    • 2011
  • The buckling assessment of plate panels described in common structural rules (CSR) is to be determined according to the buckling utilization factor with hull girder stresses calculated on net hull girder sectional properties. As the thickness requirement for the buckling assessment of plate panels is not explicitly given in CSR, a lot of time is spent to find the proper thickness of plate panels until reaching to an allowable buckling utilization factor. In this study, in order to reduce time and cost, the thickness requirement of plate panels satisfying buckling assessment was derived. The structural design system included with the thickness requirement for buckling assessment was developed. The system is called as Oil-tanker Automated Structural Investigation System (OASIS). The design result of longitudinal strength members using OASIS was verified by Nauticus Hull which is the rule scantling software of DNV. Finally, optimum design of a double hull tanker for the minimum weight using OASIS was presented.

  • PDF

A new block assembly method for shipbuilding at sea

  • Zhang, Bilin;Boo, Seung-Hwan;Kim, Jin-Gyun
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.999-1016
    • /
    • 2015
  • In this paper, we introduce a new method for assembly of shipbuilding blocks at sea and present its feasibility focusing on structural safety. The core concept of this method is to assemble ship building blocks by use of bolting, gluing and welding techniques at sea without dock facilities. Due to its independence of dock facilities, shipyard construction capability could be increased considerably by the proposed method. To show the structural safety of this method, a bulk carrier and an oil tanker were employed, and we investigated the structural behavior of those ships to which the new block assembly method was applied. The ship hull models attached with connective parts are analyzed in detail through finite element analyses, and the cargo capacity of the bulk carrier is briefly discussed as well. The results of these studies show the potential for applying this new block assembly method to practical shipbuilding.

A Study on the Strengthening of Side Structure Against Tug Push Loads (Tug Push 구조보강 방안 연구)

  • Kwon, Oh-Seok;Kim, Doe-Hyun;Ryu, Hong-Ryeul
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.65-70
    • /
    • 2009
  • In case that tug boat pushes side structures of other large vessels to maneuver, it is required that contacted side structures of the maneuvered vessels have enough structural safety against tug push loads. The objective of this study is to evaluate the structural effect of carling which is installed between side longitudinal stiffeners. A comparative study of side structures with carling and without carling is performed to evaluate the effect of carling member by both FE analysis. According to the result, it is found that the carlings play effective role in the strength of side plates and side longitudinal stiffeners against tug push loads.

  • PDF

Repair Procedure and Structural Strength Analysis to Damage of Moon-Pool Structure for Drillship During Construction (드릴쉽 건조 중 문풀 구조 수정 작업 및 구조적 안정성 검토)

  • Yoo, In-Sang;Sohn, Sang-Young;Baek, Seung-Jung;Choi, Young-Lack;Yoo, Hae-Kun;Yoon, Ki-Jeong
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.12-16
    • /
    • 2011
  • During the shipbuilding construction, the repair works will be occurred by various reasons such as the natural disaster, mistakes of engineers or workers, defect of material, and so on. The one of the engineer's responsibilities is to design considering every possibility and to prevent the repair works due to the mistakes during construction stages, but actually it is very difficult and impossible to avoid every mistake. However, it is also the responsibility of engineers to find the best solution for the unavoidable mistakes which is to maintain the capacity of vessel and guarantee the safety for the repair works considering the construction schedules and economic cost. In this paper, it will be introduced the brief of repair works to the structural damage of the moon-pool structure in drillship which is built in our shipyard. For the verification of the structural strength, the fatigue analysis has been carried out based on the guide of Classification society. Furthermore, the modifications of structure design and welding procedure have been applied to avoid the stress concentration in the moon-pool structure.

  • PDF

Technical considerations for engineering of crane pedestal operated in North-Western Australia Offshore (North-Western Australia 해상에 운용되는 Offshore Crane Pedestal 설계)

  • Song, Jun-Ho;Kim, Yong-Woon;LEE, Kyung-Seok;Kim, Man-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.34-40
    • /
    • 2015
  • The design, procurement and fabrication of FPSO project ordered by Inpex Browse, Ltd. have been currently carried out by DSME(Daewoo Shipbuilding Marine and Engineering Co.). The unit will be installed and operated in the Ichthys field offshore of North-Western Australia and there are the particular design requirements to do with performance on the environment loads corresponding to max. 10,000 years return period wave. Also, the operational life of FPSO has to be over 40 years. With this background, this paper introduces the structural design procedure of crane pedestal foundation operated in north-western Australia offshore. The design of crane pedestal foundation structure is basically based on international design code (i.e. API Spec. 2C), Classification society's rule and project specifications. The design load cases are mainly divided into the crane normal operating conditions and crane stowed conditions according to environment conditions of the offshore with 1-year, 5-year, 10-year, 200-year and 10,000-year return period wave. This design experience for crane pedestal foundation operated in north-western Australia offshore will be useful to do engineering of other offshore crane structures.

  • PDF

Ubiquitous computing Technology for Shipbuilding (조선 산업에서의 유비쿼터스 기술 활용)

  • Lee, Kyung-Ho;Kim, Dong-Geun;Park, Jong-Hoon;Kim, Dae-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.731-736
    • /
    • 2007
  • Ubiquitous computing is a model of computing in which computer functions are integrated into everyday life, providing services and information in anywhere and anytime fashion. Augmented Reality is one of ubiquitous computing technologies to provide new paradigm utilized to interact between human and computer. By adding computer-generated non-visual information to real information and their interaction. user can get the improved and more knowledgeable information about real world. The purpose of this paper is the integration of AR and knowledge-base reasoning technology in ubiquitous computing. Through the introduced concept, it is enable to provide adequate knowledge in the process of ship design and manufacturing easily (Knowledge Everywhere). That is, this is a basic research to construct knowledge-based ubiquitous environment (KAD/KAM) in shipbuilding industry.

  • PDF