• Title/Summary/Keyword: shipborne gravity survey

Search Result 4, Processing Time 0.016 seconds

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

Crustal Structure of the Continent-Ocean Zone around the Middle Eastern Part of Korean Peninsula Using Gravity Data (중력자료를 이용한 한반도 중부 대륙-해양 지역의 지각구조 연구)

  • 유상훈;민경덕;박찬홍;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.455-463
    • /
    • 2002
  • There have been few geophysical studies on the crustal structure of the continent-ocean zone around the middle eastern part of Korean peninsula, because of the lack of database in both land and ocean. The area for the study on the internal crustal structure using gravity data is bounded by the latitude of 37$^{\circ}$-38"N and longitude of 128$^{\circ}$-132$^{\circ}$E. WCA correction is applied to shipborne gravity data to integrate with gravity anomalies obtained on land. The high frequency components of the shipborne gravity data which are considered as the noise on survey track are effectively removed by means of correlating with satellite gravity data. The corrected shipborne free-air gravity anomaly is integrated with the Bouguer gravity anomaly on land under the same condition. The integrated gravity anomaly is divided into four areas for power spectrum analysis. The depths of Moho discontinuity increases gradually from inland to Ulleung basin. As the result of modeling based on power spectrum analysis, Moho discontinuity depth is about 33-35 km in the continental zone of Korea and 18-28 km at the continental margin. Such structural character is well elucidated in changing gravity data around Ulleung basin. The depths of Moho discontinuity in the southern ocean of Ulleung-island is 16--17 km, which is much lower than in the land. The result of crustal structure modeling in this study is similar to that computed by prior seismic exploration around this area.

A Study on Shipborne Gravity Data Correction Using Kalman RTS Filter (칼만 RTS 필터를 이용한 선상 중력 자료 보정에 관한 연구)

  • Hwang, Jong-Sun;Han, Hyun-Chul
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.343-348
    • /
    • 2010
  • Gravity anomalies observed in shipborne survey are usually distorted by bad weather conditions and unexpected vessel movement. These distorted data should be removed because they may mislead the data interpretation. However, it is not possible to perfectly remove all erroneous data. Cross-over point correction, which is generally used, only reduces the errors at cross-over points, and thus the data still contain error values. To resolve this drawback, Rauch-Tung-Striebel(RTS) filter was adopted to minimize all errors in the data and at cross-over points. After applying this method, the range of anomaly variation is reduced from 15 mGal to less than 2 mGal, and errors at the cross-over points are minimized from 4.21 mGal to 2.95 mGal. The results imply that RTS filter is very useful to reduce errors in the data and corss-over points.

The Study on Integration of Gravities Anomaly in South Korea and Its Vicinities by Using Spherical Cap Harmonic Analysis (구면캡 조화분석을 이용한 남한 및 그 주변지역의 중력이상 통합에 관한 연구)

  • Hwang, Jong-Sun;Kim, Hyung-Rae;Kim, Chang-Hwan;You, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The gravity anomalies that observed by ground and shipborne survey and calculated from GRACE satellite are combined by using spherical cap harmonic analysis (SCHA). In this study, ground gravity data from Korea Institute of Geoscience and Mineral Resource(KIGAM) and shipborne gravity data from National Ocean Research Institute(NORI) and Korea Ocean Research and Development institute(KORDI) were used. L-2 level GRACE Gravity Model (GGM02C) was also used for satellite gravity anomaly. The ground and shipborne surveyed data were combined and gridded using Krigging method with 0.05 degree interval and GRACE data were also gridded using the same method with 0.05 degree to harmonize with the resolution of SCHA that has coefficient up to 80. Generalized Minimal Residual(GMRES) inversion method was implemented for calculating the coefficients of SCHA using the gridded ground and satellite gravity anomalies that had 0 km and 50 km altitude, respectively. The results of inversion method showed good correlation of 0.950 and 0.995 with original ground and satellite data. The gravity anomaly using SCHA satisfies Laplace's equation, therefore, using these SCHA coefficients, gravity anomaly can be calculated at any altitude. In this study, gravity anomaly was calculated from 10 km to 60 km altitude and each altitude, very stable results were shown. The ground and shipborne gravity data that have higher resolution and satellite data in long wavelength are harmonized well with SCHA coefficients and successfully applied in South Korea area. If more continuous survey and muti-altitude surveyed data like airborne data available, more precise gravity anomaly can be acquired using SCHA method.