• Title/Summary/Keyword: shifting of column

Search Result 12, Processing Time 0.015 seconds

Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes (기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화)

  • Choi, Il-Hwan;Jung, Yu-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.682-689
    • /
    • 2008
  • The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

Visual Demonstration of Simulated Moving Bed (Simulated Moving Bed Chromatography의 시각적 설명)

  • Oh, Nan Suk;Lee, Chong-Ho;Kim, Jin Il;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.360-365
    • /
    • 2005
  • SMB (simulated moving bed) is a continuous chromatographic process by shifting periodically port position. Binary of mixture, Blue dextran and Orange G, was separated by SMB. These components have unique color individually, that is, Blue dextran is blue and Orange G is orange. It is easy to understand SMB process by observing the shift of color changes in SMB. These components was not adsorbed to stationary phase and isolated by difference of size exclusion factor. Mass transfer coefficient was determined by single pulse test under several flow rate conditions. Operation condition was obtained by standing wave theory and optimized for high purities in extract and raffinate streams. Experiment was performed in open loop 4 zone (2-2-2-2) SMB. There are several advantages in open loop SMB, where extract is product for high purity. It is also easy to control flow rate and monitor experimental state during operation. Experimental, extract and raffinate history is well fitted with simulation results, however, column concentration profile is a little different from simulation results. Purities were 99.5% for extract and 98.9% for raffinate and extract and raffinate yields were obtained as 98.9% and 99.4% respectively.