• Title/Summary/Keyword: shellfish toxin

Search Result 54, Processing Time 0.027 seconds

Studies on Distribution, Characterization and Detoxification of Shellfish Toxin in Korea 3. Detoxification of Paralytic Shellfish Poison of Sea Mussel, Mytilus edulis (한국산 주요패류에 대한 독의 분포, 특성 및 제독에 관한 연구 3. 마비성패류독의 제독에 관하여)

  • CHANG Dong-Suck;SHIN Il-Shik;GOO Hyo-Young;OH Eun-Gyung;PYUN Jae-Hyeung;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.297-302
    • /
    • 1988
  • We have veen already reported the distribution of PSP of bivalve mollusca in southern coast of Korea and also analyzed their characteristics. The purpose of this study was to develop detoxification method for PSP infested sea mussel, Mytilus edulis, by rearing methods or processing treatments. There was no significant detoxification effect when the PSP infested sea mussel was reared in a tank with water recirculation system, but the toxicity of sea mussel rapidly decreased during the rearing time in a water flow system with filtered water. The detoxification rate of PSP during the rearing for 5 days in a water flow system tank with $15-17^{\circ}C$ of sea water was $94\%$ in case of high toxic sample with more than $2,600{\mu}g/100g$ and about $40\%$ in case of low toxic sample with less than $100{\mu}g/100g$. The toxicity of PSP extracted from the sample with 0.1N/ HCl solution was about 2-5 times higher than that extracted with distilled water. When sea mussel contained $100-150{\mu}g-PSP$ per 100g of edible meat was boiled for 30 min with tap water, the toxicity was destroyed as the level of PSP undetected by mouse assay. We can suggest that boiling of sea mussel with tap water was one of the most significant detoxification methods, but it was not enough to be safe in case of extremely high intoxicated sea mussel with PSP. For example, the digestive gland of sea mussel contained more than $9593{\mu}g/100g$ was heated in a can with tap water at $116^{\circ}C$ for 65 min. the residual PSP was more than $170{\mu}g$.

  • PDF

Molecular probe for identification of cysts of resting cyst of PSP-producer Alexandrium tamarense (Dinophyceae) (분자생물학적 방법을 이용하여 마비성 패류 독소를 생산하는 알렉산드륨 타마렌스 시스트 탐색)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.163-167
    • /
    • 2003
  • Identification of species within the toxin-producing genus Alexandrium is vital for biotoxin monitoring and mitigation decisions regarding shellfish industry. In particular, the discrimination of resting cysts of only A. tamarense from that of Alexandrium spp. is considerable important to fundamentally monitor and predict this species before vegetative cells occur in the nature. Fluorescent cTAM-F1 DNA probe was responsible to not only binding the activity of the vegetative cells in A. tamarense, but also to the resting cysts, which was treated with methanol after fixation and stained by primuline on the surface The location of fluorescence in cultured vegetative cells and resting cysts was almost at tile bottom of the nucleus. The optimal incubation temperature and time using in situ hybridization were 50-$54^{\circ}C$ and 40-60 min, respectively, to penetrate the DNA probe into cell.

Studies on Distribution, Characterization and Detoxification of Paralytic Shellfish Poison (PSP) in Korea 2. Purification and Characterization of PSP Extracted from Cultured Sea Mussel, Mytilus edulis (한국산 주요패류에 대한 독의 분포, 특성 및 제독에 관한 연구 2. 진주담치에서 추출한 PSP의 분리, 정제 및 특성에 관하여)

  • CHANG Dong-Suck;SHIN Il-Shik;CHO Hak-Rae;PARK Mi-Yeun;PYEUN Jae-Hyeung;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.3
    • /
    • pp.161-168
    • /
    • 1988
  • The Stability of PSP extracted from the intoxicated sea mussel, Mytilus edulis was evaluated by the thange of heating conditions and pH of the PSP solution. Also the composition of the PSP extracted from the cultured sea mussel collected at Chungmu, Korea on March 12, 1986 was analyzed. The extracted PSP was stable over the range of pH 2.0 to 4.0, but it was unstable above pH 4.5. For example. the toxicity of extracted PSP of pH 3.0 was only decreased less than $20\%$ by the treatment at $121^{\circ}C$ for 15min or at 100 for 2 hours, but it was decreased more than $80\%$ by the same treatment when the pH of the PSP solution was adjusted to 6.0. The toxin was purified from the ethanolic extract of the digestive glands of the sampled sea mussel by Bio-gel P-2 and Bio-Rex 70 column chromatography. The toxic fractions obtained were analyzed by cellulose acetate membrane electrophoresis, TLC and HPLC. The compositional analytical results of the PSP, most of the toxins were certified as $GTX_{1-4}$, while the toxicity of STX was only about 1/40 of that of $GTX_s$.

  • PDF

Toxin Produced by Pathogenic Vibrios Isolated from Sea Food (수산물에서 분리된 병원성 비브리오균의 용혈성독소)

  • CHANG Dong-Suck;SHINODA Sumio
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 1994
  • Among the currently recognized pathogenic vibrios, V. vulnificus and V. cholerae non O1 are the most serious bacteria from the point of view of sea food hygiene in Korea. In this paper, the authors compared the hemolytic activities of the crude hemolysin produced by V. vulnificus and V. cholerae non O1 isolated from shellfish collected in Chungmoo, Korea. The authors also attempted to improve the purification method of V. vulnificus hemolysin(VVH) and tried to make antiserum with the purified hemolysin. VVH was produced in abundance in heart infusion broth containing $2\%$ NaCl in a shaking cultivation process(140rpm) at $37^{\circ}C$ for 15 hours. While hemolysin production patterns of V. cholerae non O1 were quite different by the strain during the culture times compared with the V. vulnificus. Hemolytic activity of the VVH on sheep erythrocytes was stronger than those of rabbit, but hemolytic activities of the hemolysin produced by V. cholerae non O1 on rabbit erythrocytes were as much as twice as strong as on those of sheep and horse. VVH was purified by two steps of hydrophobic column chromatography on Phenyl-Sepharose HP with Fast Protein Liquid Chromatography(FPLC). Purification fold and yield of VVH was much improved by changing the elution buffer's pH from 6.0 to 9.8 and adding $1\%$ CHAPS(a zwitter ionic detergent) and $50\%$ ethylene glycol to the 10mM glycine buffer during the repeated hydrophobic column chromatography. Homogeneity of the purified hemolysin was shown by polyacrylamide gel electrophoresis. According to the five times repeated purification results, the specific activity was increased 27500 times and the yield was improved by $23.4\%$ on average. About $250{\mu}g$ of purified hemolysin was harvested from the 2400ml of culture supernatant of V. vulnificus. Molecular weight of VVH was estimated to be 50KDa by the SDS-PAGE and the neutralization scores of the obtained antiserum acting against VVH were $2000{\sim}8500$.

  • PDF