• Title/Summary/Keyword: shell/core debonding

Search Result 2, Processing Time 0.016 seconds

Extension of a new tailoring optimisation technique to sandwich shells with laminated faces

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.739-759
    • /
    • 2012
  • The tailoring optimization technique recently developed by the author for improving structural response and energy absorption of composites is extended to sandwich shells using a previously developed zig-zag shell model with hierarchic representation of displacements. The in-plane variation of the stiffness properties of plies and the through-the thickness variation of the core properties are determined solving the Euler-Lagrange equations of an extremal problem in which the strain energy due to out-of-plane strains and stresses is minimised, while that due to their in-plane counterparts is maximised. In this way, the energy stored by unwanted out-of-plane modes involving weak properties is transferred to acceptable in-plane modes. As shown by the numerical applications, the critical interlaminar stress concentrations at the interfaces with the core are consistently reduced without any bending stiffness loss and the strength to debonding of faces from the core is improved. The structural model was recently developed by the author to accurately describe strain energy and interlaminar stresses from the constitutive equations. It a priori fulfills the displacement and stress contact conditions at the interfaces, considers a second order expansion of Lame's coefficients and a hierarchic representation that adapts to the variation of solutions. Its functional d.o.f. are the traditional mid-plane displacements and the shear rotations, so refinement implies no increase of the number of functional d.o.f. Sandwich shells are represented as multilayered shells made of layers with different thickness and material properties, the core being treated as a thick intermediate layer.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.