• Title/Summary/Keyword: sheet metal forming process

Search Result 428, Processing Time 0.028 seconds

Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal (다중곡률 판재성형을 위한 비정형롤판재성형 공정의 형상설계변수에 대한 연구)

  • Son, S.E.;Yoon, J.S.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.103-109
    • /
    • 2014
  • Flexibly-reconfigurable roll forming (FRRF), which is a sheet forming process for multi-curved sheet metal, may solve both the economic and technical problems incurred in using a conventional die forming process. In the FRRF process, the multi-curved sheet metal is formed by different strain distributions on the sheet metal, and the reconfigurable rollers are used as tools during the forming. Therefore, a thorough investigation focused on the reconfigurable rollers is required for the realization of the FRRF process prior to the fabrication of FRRF machine. In the current study, a series of finite element simulations were conducted to study the load distributions experienced by the reconfigurable roller. In order to verify the shape design variables, the effect of the metal thickness on the curvatures of sheet is also presented.

Optimization of Sheet Metal Forming Process Based on Two-Attribute Robust Design Methodology (2속성 강건 설계를 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Fractures and wrinkles are two major defects frequently found in the sheet metal forming process. The process has several noise factors that cannot be ignored when determining the optimal process conditions. Therefore, without any countermeasures against noise, attempts to reduce defects through optimal design methods have often led to failure. In this study, a new and robust design methodology that can reduce the possibility of formation of fractures and wrinkles is presented using decision-making theory. A two-attribute value function is presented to form the design metric for the sheet metal forming process. A modified complex method is adopted to isolate the optimal robust design variables. One of the major limitations of the traditional robust design methodology, which is based on an orthogonal array experiment, is that the values of the optimal design variables have to coincide with one of the experimental levels. As this restriction is eliminated in the complex method, a better solution can be expected. The procedure of the proposed method is illustrated through a robust design of the sheet metal forming process of a side member of an automobile body.

Finite Element Modeling of Rubber Pad Forming Process (고무 패드 성형 공정의 유한요소 모델링)

  • 신수정;이태수;오수익
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF

Production of CO2 Laser Forming Machine for Bending of Sheet Metal Using the FE-Analysis (유한요소해석을 이용한 박판 벤딩용 CO2 레이저 성형기 제작)

  • Ko D.C.;Lee C.J.;Kim B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.319-325
    • /
    • 2006
  • The laser forming process is a new flexible forming process without forming tools and external force, which is applied to various fields of industry. Especially, applications of the laser forming process focused on cutting, welding and marking process. In this paper, the laser bending process of sheet metal which is heated by laser beam and formed by internal stress is simulated by using thermo elastic-plastic analysis model. Based on the result of FE-analysis, the laser bending machine is made to obtain reliable data for sheet bending. Under the same condition as FE-analysis, the laser bending experiment has been performed to ver 펴 the result of FE-analysis and good agreement has been obtained between FE-analysis and experiments. Additional laser bending experiments have been performed to evaluate the laser bending machine.

Optimization of Sheet Metal Forming Process Using Mahalanobis Taguchi System (마하라노비스 다구찌(Mahalanobis Taguchi) 시스템을 이용한 박판 성형 공정의 최적화)

  • Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • Wrinkle, spring-back, and fracture are major defects frequently found in the sheet metal forming process, and the reduction of such defects is difficult as they are affected by uncontrollable factors, such as variations in properties of the incoming material and process parameters. Without any countermeasures against these issues, attempts to reduce defects through optimal design methods often lead to failure. In this research, a new multi-attribute robust design methodology, based on the Mahalanobis Taguchi System (MTS), is presented for reducing the possibilities of wrinkle, spring-back, and fracture. MTS performs experimentation, based on the orthogonal array under various noise conditions, uses the SN ratio of the Mahalanobis distance as a performance metric. The proposed method is illustrated through a robust design of the sheet metal forming process of a cross member of automotive body.

Optimization of Sheet Metal Forming Process by using Decision-Making Theory (의사결정이론을 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.125-136
    • /
    • 2012
  • Wrinkle and fracture are two major defects frequently found in the sheet metal forming process. In this process there are more than one design attributes to optimize and several uncontrollable factors which cannot be ignored in determining the optimal values of design variables. Therefore, attempts to reduce defects through a traditional optimization technique are often led to failures. In this research, a new design method for reducing the wrinkle and fracture under uncontrollable factors is presented by using decision-making theory. To avoid the psychological difficulties in determining the scaling constants of the multi-attribute utility function by using the ordinary lottery questions, a pair-wise comparison procedure is adapted to avoid this problem. The effectiveness of the proposed method is illustrated through a robust design of sheet metal forming process of a side member of an automotive body.

Design Sensitivity Analysis for the Sheet Metal Forming Process with an Elasto-plastic Finite Element Analysis and a Direct Differentiation Approach (탄소성 유한요소법과 직접미분법물 이용한 박판성형공정에서의 설계민감도 해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.93-96
    • /
    • 2001
  • Design sensitivity is calculated in the sheet metal forming process with an elasto-plastic finite element analysis and a direct differentiation method The sensitivity analysis is concerned with the time integration the constitutive relation considering planar anisotropy, shell elements and the contact scheme. The present result is compared with the result obtained with the finite difference approach in deep drawing processes. The obtained sensitivity information is applied to the simple optimization process for the sheet metal forming process.

  • PDF

On the Prediction of the Wrinkling Initiation in Sheet Metal Forming Processes (박판성형 공정에서 발생하는 주름의 예측에 관하여)

  • Kim J. B.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.124-127
    • /
    • 2000
  • The finite element analyses of the wrinkling initiation and growth in the sheet metal forming process provide the detailed information about the wrinkling behavior of sheet metal. The direct analyses of the wrinkling initiation and growth, however, bring about a little difficulty in complex industrial problems because it needs large memory size and long computation time. For the description of wrinkling growth, the mesh elements should be sufficiently small and the size of finite element matrix becomes large. In the static implicit finite element method therefore, the direct analysis of wrinkling growth in a complex sheet metal forming process is rather difficult. From the industrial viewpoint of tooling design, the readily available information of possibility and location of wrinkling is sometimes more preferable to the detailed time-consuming information. In the present study, therefore, the wrinkling factor that shows locations and relative possibility of wrinkling initiation is proposed as a convenient tool of relative wrinkling estimation based on the energy criterion. The location and relative possibility of wrinkling initiation are predicted by calculating the wrinkling factor in various sheet metal forming processes such as cylindrical cup deep drawing, spherical cup deep drawing, and elliptical cup deep drawing. The wrinkling factor is also implemented in the analysis of the door inner stamping process to predict wrinkling.

  • PDF

Development of the Backward Tracing Scheme of FEM and Its Application to Initial Blank Design in Sheet Metal Forming (유한요소법을 이용한 역추적기법 개발 및 판재성형의 초기블랭크 형상설계에 적용)

  • 최한호;강경주;구태완;임학진;황상문;강범수
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.348-355
    • /
    • 2000
  • The backward tracing scheme(BWT) of the finite element method has been extended lot the design of sheet blank in three-dimensional deformation. Originally the scheme was developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform or initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. For the confirmation of the analytic result derived from the backward tracing simulations as well as forward loading simulations, a series of experiment were carried out. The experiments include the first trial sheet forming process with a rectangular blank, an improved process with a modified blank preform and the final process with an optimum blank resulted from the backward tracing scheme. The experiments show that the backward tracing scheme has been implemented successfully in blank design of sheet metal forming.

  • PDF

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( Part I )- Production Part and Strip Process Layout -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.253-257
    • /
    • 2001
  • This study reveals the sheet metal working with multi-forming type ultra precision process. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming ultra precision progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. This part I of papers related to the analysis of production part and strip process layout design through the metal forming simulation by DEFORM and IDEAS.

  • PDF