• Title/Summary/Keyword: shearing stress

Search Result 217, Processing Time 0.026 seconds

Behavior of Punch Deformation in Precision Shearing Process Using Press Die (금형을 이용한 정밀전단가공에서 펀치의 변형거동)

  • Jeong, Jun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.62-69
    • /
    • 2000
  • Uneven clearances in the left and right sides of a press die cause deformation of the punch in precision shearing process. This deformation results from the compression stress and bending moment from shearing force in vertical direction and from the side force in horizontal direction acting to the punch, In this study the behavior of punch deformation is investigated in order to clarify the deformation state of the punch by using strain gauge deformation to shearing force side force bending moment radius of curvature and shear plane of the punch. Also we presented the calculation method of deformation size for the punch.

  • PDF

An Experimental Study on the Reinforcement and Stabilization of Slope by Vegetation Roots (식생뿌리에 의한 비탈면 안정과 보강에 관한 실험적 연구)

  • Cho, Ju-Hyoung;Ahn, Bong-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • This study measured the shearing resistance of the roots of the Sasamorpha purpurascens, Miscanthus sinensis, Lespedeza cyrtobotrya by the tensile strength gained through their individual tensile test for the Root Reinforcement Model. The results to have measured this stress by experiment are as follows. 1) The mean root diameter of the Lespedeza cyrtobotrya used for this experiment was 2.19mm and the mean tensile stress was calculated as $929.489kgf/cm^2$. As for the Sasamorpha purpurascens, its mean root diameter was 1.727mm, and the mean tensile stress was $292.069kgf/cm^2$. And as for the Miscanthus sinensis, its mean root diameter was 0.814mm, and the mean tensile stress was $696.947kgf/cm^2$. And so, it was grasped that Lespedeza cyrtobotrya was highest in tensile stress. 2) ${\Delta}Cr(kg/cm^2)$ of the shearing resistance calculated by estimating the areal ratio of roots at $10^{-3}$ is $1.069kg/cm^2$ in Lespedeza cyrtobotrya, $0.336kg/cm^2$ in Sasamorpha purpurascens, and $0.801kg/cm^2$ in Miscanthus sinensis. That is, Lespedeza cyrtobotrya has the highest shearing resistance. However, since a precise analysis of the controlled factors of the slope analyses are demanded for more accurate dynamic analyses, the future demands a study on this.

  • PDF

A strain hardening model for the stress-path-dependent shear behavior of rockfills

  • Xu, Ming;Song, Erxiang;Jin, Dehai
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.743-756
    • /
    • 2017
  • Laboratory investigation reveals that rockfills exhibit significant stress-path-dependent behavior during shearing, therefore realistic prediction of deformation of rockfill structures requires suitable constitutive models to properly reproduce such behavior. This paper evaluates the capability of a strain hardening model proposed by the authors, by comparing simulation results with large-scale triaxial stress-path test results. Despite of its simplicity, the model can simulate essential aspects of the shear behavior of rockfills, including the non-linear stress-strain relationship, the stress-dependence of the stiffness, the non-linear strength behavior, and the shearing contraction and dilatancy. More importantly, the model is shown to predict the markedly different stress-strain and volumetric behavior along various loading paths with fair accuracy. All parameters required for the model can be derived entirely from the results of conventional large triaxial tests with constant confining pressures.

Stressed Liquid Crystals

  • West, John L.;Zhang, Guoqiang;Glushchenko, Anatoliy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.263-265
    • /
    • 2003
  • Stressed liquid crystals, SLCs, consist of a lowdensity polymer network dispersed in a nematic host. We induced stress by shearing the material. Alignment layers are not required because the liquid crystal director uniformly aligns along the direction of shear. The shearing stress also eliminates light scattering and results in sub-millisecond switching speeds, making them good candidates for video display applications.

  • PDF

Inverse active wind load inputs estimation of the multilayer shearing stress structure

  • Chen, Tsung-Chien;Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.19-33
    • /
    • 2008
  • This research investigates the adaptive input estimation method applied to the multilayer shearing stress structure. This method is to estimate the values of wind load inputs by analyzing the active reaction of the system. The Kalman filter without the input term and the adaptive weighted recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the adaptive weighted recursive least square estimator to estimate the wind load input over time. This combined method can effectively estimate the wind loads to the structure system to enhance the reliability of the system active performance analysis. The forms of the simulated inputs (loads) in this paper include the periodic sinusoidal wave, the decaying exponent, the random combination of the sinusoidal wave and the decaying exponent, etc. The active reaction computed plus the simulation error is regard as the simulated measurement and is applied to the input estimation algorithm to implement the numerical simulation of the inverse input estimation process. The availability and the precision of the input estimation method proposed in this research can be verified by comparing the actual value and the one obtained by numerical simulation.

EIDSON을 활용한 보의 선형 및 비선형 거동 해석

  • Sin, Dong-Gil;Son, In-Seo;Son, Dong-Min;Song, Yu-Jeong;Mun, Hak-Gyeong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.266-268
    • /
    • 2015
  • In this paper, we write about EDISON program. We study about where to use this program. We can use this program for FEA naturally. But we study that using this program in class. Many students can't understand many mechanics of materials' problem. They want to see image such as change of beam. It can help students to understand many problem. We can use ANSYS or Abaqus. But EDISON program is better for students because of it is freeware. In this paper, I write two problem. One is peak stress of basic beam, another is shearing stress flow of I-beam. On the basis of this, EDISON program will be widely used.

  • PDF

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.

Development of a Channel Cutting Die Set (형재 절단금형 개발에 관한 연구)

  • Park, Kuwi-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.117-122
    • /
    • 2001
  • Many kinds of channels are used in industrial equipment and production machinery. Although mechanical saw has been used to cut many sorts of channels, there is cost rise problem because of low productivity. Shearing of channel has a special place because it helps to cut expected shape and size easily. A channel cutting die set which can be mounted and used on a hydraulic press is developed to improve the productivity of channel cutting process. Mode for the channel cutting is divided into single cut and double cut method. This study use double cut method, and the developed channel cutting die set is composed of upper and lower die set. Shearing time can be reduced from 40 minutes to 20 seconds using the developed channel cutting die set. The productivity of channel cutting process can be increased with shearing time reduction as well as cost reduction.

  • PDF

A Study on the Slope Stability Analysis by Shearing Reinforcement of Vegetation Roots -Focused on the Pinus Koraiensis Roots- (식생뿌리의 전단강도 보강에 의한 사면안전율 해석 -잣나무 뿌리를 중심으로-)

  • 조주형;이종성
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.80-93
    • /
    • 2000
  • This study measured the shearing resistance of the roots of the Pinus Koraiensis by the tensile strength gained through their individual tensile test for the Root Reinforcement Model. On the basis of the shearing resistance value calculated through such a process the factor of safety(Fs) was comparatively presented by using the simplified Janbu Method in PCSTABL5M, the slop-analyzing software which had been developed in Purdue University of the U.S.A according to the shape of a slope and the type of soil. The results to have measured a stress and the factor of safety(Fs) by experiment are as follows. 1) The mean root diameter of the Pinus Koraiensis used for this experiment was 2.483mm and the mean tensile stress was calculated as 422.846(kgf/$\textrm{cm}^2$). In the strain ratio of material and the elastic modulus was measured 7.8%, 9,291.92(kgf/$\textrm{cm}^2$). 2) The shearing strength including the resistance of soil and root is expressed as Rt=C+Cr+$\sigma$.tan . ΔCr(kg/$\textrm{cm}^2$) of the shearing resistance calculated by estimating the areal ratio of roots at 10 is 0.253(kgf/$\textrm{cm}^2$). 3) As the result of making an analysis of the natural slope stability by the soil parameter, the factor of safety(Fs) was calculated at 1.795 in CL, and the stability analysis of the root reinforcement slope, Fs was calculated at 1.952. However, since a precise analysis of the controlled factors of the slope analyses are demanded for more accurate dynamic analyses, the future demands a study on this.

  • PDF