• Title/Summary/Keyword: shearing strength

Search Result 204, Processing Time 0.025 seconds

Effect of Sodium Chloride on Stress-Deformation of Sand Bentonite Mixture (염분이 모래와 벤토나이트 혼합토의 응력 변형에 미치는 영향)

  • 안태봉
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.17-28
    • /
    • 1997
  • In this study sodium chloride solution is employed for chemicals, and several cylindrical triaxial tests are performed on the sand-bentonite mixtures saturated with sodium chloride solution. Deformation(elastic modulus, E) and strength(cohesion, c', and angle of friction, f') parameters are obtained from the triaxial tests as functions of confining pressure and sodium chloride solution concentrations. The results here indicate an increase in the value of effective cohesion with increase in the concentration of NaCl solution, which can be explained by using the Gouy-Chapman model. The value of the effective angle of shearing resistance does not show significant change with the increase in concentration of NaCl solution. The Young's modulus also increases with the increase in concentration of NaCl solution.

  • PDF

An Experimental Study for Shear-Carrying Capacity of Reinforced Concrete Beam with GFRP Stirrup (GFRP 스터럽으로 보강된 콘크리트 보의 전단성능에 관한 실험적 연구)

  • Sim, Jong-Sung;Oh, Hong-Seob;Park, Cheol-Woo;Ju, Min-Kwan;Kang, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.263-266
    • /
    • 2005
  • Recently, many researches for high-strength and high-durability concrete structure have remarkably been studied by adopting new construction material, fiber reinforced polymer (FRP). In connection with these research trend, the shearing capacity of concrete beams reinforced by GFRP stirrup which is developed in this study was evaluated. Experimental variables are span to depth ratio and spacing of shear reinforcement for test. In the result of test, the crack pattern, failure mode and shear load between shear steel reinforcement specimen and GFRP stirrup reinforcement specimen showed similar structural tendency. Therefore, it was investigated that the adaptability of shear-reinforced concrete structure with GFRP stirrup will be improved with further researches of shear design variables.

  • PDF

Fine Blanking Characteristics of T-shaped Blanks (T 형 제품의 파인 블랭킹 가공 특성)

  • 장영도;최치수;김대현;김종호;류제구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.598-602
    • /
    • 1996
  • This study is performed for investigating the effects of stripping and counter punching force on shearing characteristics in fine blanking, such as camber, burr-height and dimensional accuracy, etc by experiments. Conventional hydraulic press equipped with specially designed hydraulic unit is used for experiments so that both the stripping force and counter punching force are arbitrarily adjusted according to experimental conditions. Two kinds of materials, hot rolled steel sheet(1mm, 3mm) and pure aluminum(1mm, 3mm) are selected in order to examine the influence of strength and thickness of working materials in blanking of T-shaped products. Based on the experimental results of this study, it can be concluded that the finely cut surface of sheared blank can be obtained even in conventional hydraulic press if additional equipments and special dies are employed.

  • PDF

Applicability of Optimum Algorithm for Automated Design of Electric Railway Pole Foundation (전철주기초 설계 자동화를 위한 최적화 알고리즘의 적용성 검토)

  • Lee, Gi-Yeol;Park, Yong-Dae;Chung, Won-Yong;Song, Kyu-Seok;Lim, Sun-Taek;Kim, Jong-Nam;Lee, Su-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1047-1053
    • /
    • 2009
  • This paper examined an applicability of optimum algorithm to develope an electric railway pole foundation automated design system. Based on the optimization theory that considered subgrade and bearing capacity characteristics, decided an optimum section of electric railway pole foundation. In this research, Optimum algorithm used the feasible direction method in structural analysis and design efficiently. Design variables are considered geometric properties and anchor bolt area of the electric railway pole foundation as optimum construction cost. Constraints are considered settlement., overturning and activity of foundation. And, also composed flexural and shearing strength. According to optimum analysis result., optimization theory is available more economical design comparing with railway pole foundation that is constructed by current standard drawing, and applicability verified in automated design system development.

  • PDF

Optimum Alignment of Marine Engine Shaftings by the Finite Element Method (有限要素法에 의한 舶用機關軸系裝置의 最適配置에 關한 硏究)

  • Jeon, Hio-Jung;Park, Jin-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-14
    • /
    • 1978
  • The authors have developed a calculating method of propeller shaft alignment by the finite element method. The propeller shaft is divided into finite elements which can be treated as uniform section bars. For each element, the nodal point equation is derived from the stiffness matrix, the external force vector and the section force vector. Then the overall nodal point equation is derived from the element nodal point equation. The deflection, offset, bending moment and shearing force of each nodal point are calculated from the overall nodal point equation by the digital computer. Reactions and deflections of supporting points of straight shaft are calculated and also the reaction influence number is derived. With the reaction influence number the optimum alignment condition that satisfies all conditions is calculated by the simplex method of linear programming. All results of calculation are compared with those of Det norske Veritas, which has developed a computor program based on the three-moment theorem of the strength of materials. The authors finite element method has shown good results and will be used effectively to design the propeller shaft alignment.

  • PDF

Verification on the Compressive Behavior of Corrugated Steel Plates due to Details of Bolted Lap Joint (압축하중을 받는 파형강판 연결부 상세에 따른 구조거동 분석)

  • Oh, Hong Seob;Nam, Ki Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • This study is dealt with the experimental seam strength of deep corrugated steel plate which is used as underpasses, storm sewers and other buried applications. The soil-metal structure using deep corrugated plate should be sufficient to ensure safety for compressive loading. The experimental and theoretical results on the seam strength are accumulated enough to take the design guideline, even if the seam strength at the bolt connected lap joint in construction site can be varied depending on the connection detailing and the thickness of plate. In this study, compressive behavior of bolted lap jointed plates using various connection detail such as gasket, slot hole, washer was experimentally analyzed. From the test, failure pattern with an increases in the thickness of specimens was changed from plate bearing to bolt shearing. In case of thicker plates than 6.0mm, the structural performance of lap joint using gasket and slot hole is more effective than it of the plate adopted washer.

A Study on the Fire Resistance and Mechanical Properties of High Strength Concrete Mixed Hybrid Fibers (하이브리드 섬유 혼입 고강도 콘크리트의 내화 및 역학적 특성에 관한 연구)

  • Shin, Young-Suk;Li, Zhi-Min;Yoo, Myung-Hwan;Cho, Cheol-Hee;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.67-75
    • /
    • 2010
  • In this paper, by using steel fiber, polypropylene fiber and these two hybrid fibers, the fire resistance performance and explosive properties of High Strength Concrete (HSC) with specified compressive strength of 40MPa are discussed. The paper also examines the bending resistance of the beam and the shearing resistance properties of non-reinforced HSC beam. This research helps to clarify the fire resistance of fiber HSC and its anti-explosion methods. The test results show that crack generation, explosion and carbonization can be effectively restrained when HSC is mixed with hybrid fibers under high temperature; furthermore, the maximum internal force and ductility are increased and the initial cracking can be restrained in the mechanical test.

Experimental Study on the Residual Soil-Grout Interface-shearing Behavior (풍화토-그라우트 인터페이스 전단 거동 특성에 대한 실험적 연구)

  • Shin, Gyu-Beom ;Chung, Choong-Ki;Kim, Inhyun;Jo, Bum-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.19-29
    • /
    • 2023
  • This research proposes a direct shear test method to evaluate the behavior of the soil-grout interface. The proposed test method was employed to conduct direct shear tests on two types of specimens: residual soil and residual soil-grout. The evaluation of the shear stress-slip curve indicated that the residual shear strength of residual soil-grout was similar to that of residual soil. It was further confirmed that residual soil determines the behavior of the critical state of the residual soil-grout interface. However, a remarkable increase in the maximum shear strength at the residual soil-grout interface was observed. The increase rate of the maximum shear strength was higher in loose soil due to the increased thickness of the interface layer where residual soil particles and grout particles are mixed.

Temperature Dependence of Tensile Properties in Single Crystal Superalloy CMSX-4 (단결정 초내열 합금 CMSX-4의 온도에 따른 인장특성의 변화)

  • Baig-Gyu Choi;Jeonghyeon Do;Joong Eun Jung;Sangwon Lee;In Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.44 no.3
    • /
    • pp.59-69
    • /
    • 2024
  • The tensile properties of the single crystal superalloy CMSX-4 were examined at various temperatures. In the heat-treated state, some portion of the eutectic γ-γ' remained, and a uniform cuboidal γ' particles existed across the entire material. The yield strength and tensile strength reached highest at 750℃ and decreased with raising testing temperature. The elongation was lowest at 650℃ due t℃oncentrated deformation near the fracture area. However, the elongation increased at higher temperatures due to uniform deformation throughout the entire specimen. Fracture surface analysis tested at 850℃ and 950℃ revealed that cracks originated from casting defects. TEM observations conducted after the tensile test indicated that the primary deformation mechanism at room temperature involved dislocation shearing within the γ' phase. However, the increased strength both at 750℃ where stacking faults generated and at 650℃ was caused by the increased resistance of γ' phase to dislocation. The strength decreased because the movement of dislocations became easier due to the thermal activation process at and above 850℃.

Physicochemical Changes in Tilapia Oreochromis niloticus Muscle Induced by Acclimation to Sea Water (해수순화에 따른 틸라피아 근육의 물리화학적 변화)

  • Hwang, Gyu-Chul;Yoon, Ho-Dong;Ji, Cheong-Il;Park, Jeong-Heum;Kim, Seong-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.185-190
    • /
    • 1993
  • Tilapia cultured in fresh water were acclimated in sea water with daily increase of $5%_{\circ}$ of salinity and it was completely terminated at the 7th day (0 week). Each three tilapia acclimated were examined weekly based from 0 week to elucidate changes of chloride cells in gill, mineral contents and physical properties in muscle and biochemical characteristics in myofibrils. Chloride cells existed in gills were gradually developed in number and size by acclimation to sea water and became to almost constant state at the third week. Shearing value, compressing strength and content of minerals such as Mg, Na and K in muscle were showed remarkable increase by acclimation to sea water in comparison to those of muscle from tilapia reared in fresh water. Myofibrillar $Mg^{2+}-,\;Ca^{2+}-$ and $K^+(EDTA)-ATPase$ activities of tilapia acclimated in sea water also increased showing significant statistic difference (p<0.01) from those of tilapia reared in fresh water However. thermostability of myofibrils was dropped by acclimation to sea water. The increase of shearing value and compressing strength in the muscle of tilapia by acclimation to sea water would be attributed to the increase of myofibrillar ATPase activities which act to accelerate the decomposition rate of ATP. Therefore, it is suggested that this phenomenon associated with muscle contraction could be brought an improvement of texture of tilapia acclimated in sea water.

  • PDF