• Title/Summary/Keyword: shear-strengthening effect

Search Result 144, Processing Time 0.024 seconds

An Experimental Study on the Bond Failure Behavior between Parent Concrete and CFM (콘크리트와 탄소섬유메쉬의 부착파괴 거동에 관한 실험적 연구)

  • 오재혁;성수용;한병찬;윤현도;서수연;김태용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.965-970
    • /
    • 2002
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of the enhanced bond of CFM. Therefore if bond strength is sufficient, it will be expected to enhance reinforcement effect. If insufficient, reinforcement effect can not be enhanced because of bond failure between concrete and CFM. This study is to investigate the bond strength of CFM to the concrete using direct pull-out test and tensile-shear test. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

  • PDF

Effect of stiffeners on failure analyses of optimally designed perforated steel beams

  • Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.183-201
    • /
    • 2016
  • Perforated steel beams can be optimised by increased beam depth and the moment of inertia combined with a reduced web thickness, favouring the use of original I-section beams. The designers are often confronted with situations where optimisation cannot be carried out effectively, taking account of the buckling risk at web posts, moment-shear transfers and local plastic deformations on the transverse holes of the openings. The purpose of this study is to suggest solutions for reducing these failure risks of tested optimal designed beams under applying loads in a self-reacting frame. The design method for the beams is the hunting search optimisation technique, and the design constraints are implemented from BS 5950 provisions. Therefore, I have aimed to explore the strengthening effects of reinforced openings with ring stiffeners, welded vertical simple plates on the web posts and horizontal plates around the openings on the ultimate load carrying capacities of optimally designed perforated steel beams. Test results have shown that compared to lateral stiffeners, ring and vertical stiffeners significantly increase the loadcarrying capacity of perforated steel beams.

Effect of Strengthening by Reverse Transformation of Ausformed Martensite and Marformed Martensite of Fe-31% Ni-0.2% C Alloy (Fe-31% Ni-0.2% C 합금(合金)의 오스폼드 마르텐사이트와 마르폼드 마르텐사이트의 역변태처리(逆變態處理)에 의한 강화효과(強化效果))

  • Kim, Byung Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.26-36
    • /
    • 1993
  • In this study, the ausformed martensite and marformed martensite obtained from austenite with various deformation degrees in Fe-31% Ni-0.2%C alloy were transformed to revesed austenite at $510^{\circ}C$ by cyclic reverse martensite transformation. The effect of prior deformation, the rapid heating rate of reversion and number of cyclic transformation on the microstructure, mechanical properties of reversed austenite were investigated. The reverse austenite transformation is accomplised by the mechanism of shear type transformation. The structure of reversed austenite formed from ausformed martensite and marformed martensite with high deformation degrees is a fine structure of nearly equiaed grain containg a high density of dislocation tangles and was largely affected by the prior deformation applied before reversal transformation. The strength of reversed austenite is more increased with of cyclic transformation especially it is strength at the first cyclic transformation. The yield stress of revesed austenite of ausformed martensite is lower than that of marformed martensite.

  • PDF

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study

  • Chergui, Selma;Daouadji, Tahar Hassaine;Hamrat, Mostefa;Boulekbache, Bensaid;Bougara, Abdelkader;Abbes, Boussad;Amziane, Sofiane
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.197-217
    • /
    • 2019
  • In this study, the interfacial stresses in RC beams strengthened by externally bonded prestressed GFRP laminate are evaluated using an analytical approach, based on the equilibrium equations and boundary conditions. A comparison of the interfacial stresses obtained from the present analytical model and other existing models is undertaken. Otherwise, a parametric study is conducted to investigate the effects of geometrical and material properties on the variation of interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate. The results obtained indicate that the damage degree has little effect on the maximum shear stress, with a variation less than 5% between the damaged and undamaged RC beams. However, the results also reveal that the prestressing level has a significant effect on the interfacial stresses; hence the damaged RC beam strengthened with an initial prestressing force of 100 kN gives 110% higher maximum shear stress than the damaged RC beam strengthened with an initial prestressing force of 50 kN. The values of shear stress obtained by the analytical approach are approximately equal to 44% of those obtained from the numerical solution, while the interfacial normal stresses predicted by the numerical study are approximately 26% higher than those calculated by the analytical solution.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • 김기태;서정;조윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.19-19
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test(τ/σ= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio τ/σ. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams

  • Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes;Redha, Yeghnem
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.435-454
    • /
    • 2011
  • Bonding composite materials to structural members for strengthening purpose has received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs. In this paper, a numerical solution using finite - difference method is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends with different thinning profiles. These latter, can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.

A Study on the Composite Strengthening Effect in Metal Matrix Composites (단섬유 금속복합체에서의 복합강화효과에 관한연구)

  • 김홍건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.61-66
    • /
    • 1996
  • An overall feature to simulate composite behavior and to predict closed solution has been performed for the application to the stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite, the micromechanics analysis and finite element analysis (FEA) were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. Further, a micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites has been developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparions between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

The Effect of Heat treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼마모특성에 미치는 열처리조건의 영향)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metallurgy(PM-HSS) had been evaluated in previous paper. The wear properties of materials, in fact, have been a]so influenced by heat-treating conditions. In this paper, the effects of heat-treating conditions on wear properties of PM-HSS have been evaluated. The wear tests have been performed as same conditions as previous paper using PM-HSS(5%Co-1%Nb) heat-treated under different quenching and tempering temperature. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However tempering temperature is not sensitve to the wear resistance in range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms of quenching aging in addition to dispersion-hardening is improved.

  • PDF

Analysis of Behavior in RC Beams Strengthened by Gass-Fiber Reinforced Epoxy-Panel (유리섬유보강 Epoxy-Panel로 보강된 철근콘크리트보의 거동해석)

  • 이창훈;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.444-449
    • /
    • 1998
  • The Glass-Fiber Reinforced Epoxy-Panel(GFREP) is a composite material developed for repairing and strengthening of RC structures. The objective of this study is to verify the applicability of finite element modeling technique to analyze behaviors of RC beams strengthened by the GFREP. In this study, the basic material properties obtained by experiments on the GFREP and the reinforced concrete constitutive models were considered and the comparison between analyses and experiments of RC beam specimens strengthened by the GFREP was made. Although analysis method in this paper was reasonably good, the necessities which can consider the effect of plate-end shear and plate separation were recognized.

  • PDF