• Title/Summary/Keyword: shear-friction

Search Result 969, Processing Time 0.033 seconds

Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구)

  • Kim, B.S.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

A Study on Tribological Properties of Magneto-Rheological Fluid (MRF) in Polishing Process (연마공정에서 MR 유체의 트라이볼로지적 성질에 대한 연구)

  • Lee S.O.;Jang K.I.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.497-498
    • /
    • 2006
  • Tribological properties of a Magneto-Rheological(MR) fluid in a polishing process are studied. For this polishing process, abrasive wear model is proposed as a function of shear force, normal force and actual mean velocity of MR particles at workpiece surface. Experimental conditions are changed by varying the gap distance between workpiece and tool and the rotational speed of tool. From the experimental results, a modified Stribeck curve is obtained, and the friction coefficient turns out to have linear relationship with a modified Sommerfeld number. The validity of the wear model is supported by additional experiments performed for measuring material removal rates.

  • PDF

An Analysis of the Mechanical Characteristics of the Knife Edges used in the NPL Watt Balance (질량신정의 구현을 위한 NPL 와트발란스 나이프에지의 기계적 특성 분석)

  • Choi, In-Mook;Robinson, Ian;Woo, Sam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.61-68
    • /
    • 2008
  • Of the seven base units of the international system of units, only the kilogram is still defined in terms of a material artifact. One of the experimental approaches opening the way to a new definition of the kilogram is the watt balance To improve the performance of the NPL watt balance, we need to quantify and reduce hysteresis effects in the balance knives. In this paper, we discuss the mechanical characteristics of the knife edges used in the NPL watt balance. The hysteresis mechanism is analyzed using the finite element method. It is found that the cause of hysteresis is not normal stress but shear, and the deformation of the flat, rather than the knife, is an important factor in the hysteresis mechanism. The study presented here, using finite element analysis, suggests that parameters such as material property, tip radius and knife straightness can be more important than others, such as friction coefficient, tip angle, etc.

Evaluation of Thickness Reduction in an Aluminum Sheet using SH-EMAT (SH-EMAT를 이용한 알루미늄 박판의 두께감육 평가)

  • Kim, Yong-Kwon;Park, Ik-Kuen
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, a non-contact method of evaluating the thickness reduction in an aluminum sheet caused by corrosion and friction using SH-EMAT (shear horizontal, electromagnetic acoustic transducer) is described. Since this method is based on the measurement of the time-of-flight and amplitude change of guided waves caused from the thickness reduction, it provides information on the thinning defects. Information was obtained on the changes of the various wave features, such as their time-of-flight and amplitude, and their correlations with the thickness reduction were investigated. The interesting features in the dispersive behavior of selected guided modes were used for the detection of thinning defects. The measurements of these features using SH waves were performed on aluminum specimens with regions thinned by 7.2% to 29.5% of the total thickness. It is shown that the time-of-flight measurement provides an estimation of the thickness reduction and length of the thinning defects.

Numerical simulation of aerodynamic characteristics of a BWB UCAV configuration with transition models

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.8-18
    • /
    • 2015
  • A numerical simulation for a nonslender BWB UCAV configuration with a rounded leading edge and span of 1.0 m was performed to analyze its aerodynamic characteristics. Numerical results were compared with experimental data obtained at a free stream velocity of 50 m/s and at angles of attack from -4 to $26^{\circ}$. The Reynolds number, based on the mean chord length, is $1.25{\times}106$. 3D multi-block hexahedral grids are used to guarantee good grid quality and to efficiently resolve the boundary layer. Menter's shear stress transport model and two transition models (${\gamma}-Re_{\theta}$ model and ${\gamma}$ model) were used to assess the effect of the laminar/turbulent transition on the flow characteristics. Aerodynamic coefficients, such as drag, lift, and the pitching moment, were compared with experimental data. Drag and lift coefficients of the UCAV were predicted well while the pitching moment coefficient was underpredicted at high angles of attack and influenced strongly by the selected turbulent models. After assessing the pressure distribution, skin friction lines and velocity field around UCAV configuration, it was found that the transition effect should be considered in the prediction of aerodynamic characteristics of vortical flow fields.

The Leakage and Rotordynamic Analysis of A Combination-Type-Staggered-Labyrinth Seal for A Steam Turbine (스팀 터빈용 조합형 엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong;Lee, Yong-Bok;Kim, Seung-Jong;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.45-54
    • /
    • 2004
  • Governing equations and numerical solution methods are derived for the analysis of a combination-type-staggered-labyrinth seal used in high performance steam turbines. A bulk flow is assumed for each combination-type-staggered-labyrinth cavity. Axial flow through a throttling labyrinth strip is determined by Neumann's leakage equation and circumferential flow is assumed to be completely turbulent in the labyrinth cavity. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion near the centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the combination-type-staggered-labyrinth seal. Theoretical results of leakage and rotordynamic characteristics for the IP4-stage seal of USC (ultra super critical) steam turbine are shown with the effect of sump pressure, the number of throttling labyrinth strip, and rotor speed.

Interfacial Friction Factors for Air-Water Co-current Stratified Flow in Inclined Channels

  • Choi, Ki-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.481-486
    • /
    • 1997
  • The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from $0^{\circ}\;up\;to\;10^{\circ}$. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group ($0^{\circ}\;{\leq}\;{\theta}\;{\leq}\;0.7^{\circ}$), and inclined channel data group ($0.7^{\circ}\;{\leq}\;{\theta}\;{\leq}\;10^{\circ}$). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, $\Delta$h/h, is empirically correlated in terms of $Re_{G}$ and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination.

  • PDF

Poisson's Ratio Prediction of Soil Using the Consolidation Undrained Triaxial Compression Test (압밀비배수 삼축압축실험을 이용한 지반의 포아송비 예측)

  • Lim, Seongyoon;Yu, Seokchoel;Kim, Yuyong;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The poisson's ratio was obtained from the effective vertical stress and horizontal stress of consolidation-undrained test. It was analyzed void ratio verse poisson's ratio. At the result, the effective friction angle was increase with relative density increased, was decreased the poisson's ratio. The empirical equation of void ratio and poisson's ratio was showed very high correlation r2=0.846. The empirical equation was showed that the smaller the void ratio in the fine grained soil than granular soil. In the case of 0.85 times the correlation analysis equation of granular and fine grained soil, the experimental results were shown very similarly. In especially, the poisson's ratio prediction results was shown within 5% of the error range, was revalidation 0.85 times the correlation analysis equation using the void ratio. In this study, correlation analysis equation of the granular and fine grained soil was more reliability of the poisson's ratio prediction results apply to the void ratio than dry unit weight.

On the Variation of Resistance Components due to Air Bubble Blowing on Bulb Surface of a Ship (구상 선수 주위의 유동과 기포 공급 효과에 관한 실험적 연구)

  • Geun-Tae Yim;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.54-64
    • /
    • 1996
  • It seems that blowing air bubble out of the bulb surface of a ship of flat bottom will reduce the frictional resistance, since wetted area of the hull surface is reduced owing to air bubble staying close to the surface. To as certain this concept, at first, the limiting streamlines around the bow was observed, and local distribution of pressure and shear stress, due to the change of air-blowing position, air supply pressure, and the model speed, was investigated. It was found that the local friction was reduced near the bulb and air-bubble formations also play an important role as a drag component. This paper can be considered as a preliminary study on the drag reduction of conventional ships by the micro-bubble injection.

  • PDF

Critical State Parameters of a High Compressible Jeju Sand (압축성이 큰 제주해사의 한계상태정수)

  • Lee, Moon-Joo;Hong, Sung-Jin;Choi, Young-Min;Kim, Min-Tae;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1383-1390
    • /
    • 2009
  • This study conducted a series of drained triaxial test in order to determine the critical state parameters of a high compressible Jeju sand. Jeju sand is classified into mixed sand containing both siliceous and calcareous materials and has high extreme void ratios due to the angularity of grains and the intra-particle voids of hollow particles. It is observed that the behavior of Jeju sand is similar to that of general calcareous sand. The friction angle of Jeju sand at critical state gradually decreases with increasing the mean effective stress. Test result shows that the particle crushing resulted from stress during shear causes the reduction of void ratio at critical state.

  • PDF