• 제목/요약/키워드: shear-axial interaction

검색결과 80건 처리시간 0.023초

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Soil-structure interaction and axial force effect in structural vibration

  • Gao, H.;Kwok, K.C.S.;Samali, B.
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.1-19
    • /
    • 1997
  • A numerical procedure for dynamic analysis of structures including lateral-torsional coupling, axial force effect and soil-structure interaction is presented in this study. A simple soil-structure system model has been designed for microcomputer applications capable of reflecting both kinematic and inertial soil-foundation interaction as well as the effect of this interaction on the superstructure response. A parametric study focusing on inertial soil-structure interaction is carried out through a simplified nine-degree of freedom building model with different foundation conditions. The inertial soil-structure interaction and axial force effects on a 20-storey building excited by an Australian earthquake is analysed through its top floor displacement time history and envelope values of structural maximum displacement and shear force.

힌지모델을 이용한 강 거더 교량의 비선형 지진해석 (Nonlinear Earthquake Analysis of a Steel Girder Bridge using Point Hinge Models)

  • 이도형;김용일;이두호;전정문
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.403-411
    • /
    • 2009
  • 본 연구에서는 1995년 고베 지진에 의해 손상을 입은 강 거더 교량에 대해 비선형 지진해석을 수행하였다. 해석수행을 위해 휨-축력 및 휨-전단-축력간의 상호작용을 모사할 수 있는 이력모델을 제안하였다. 제안된 이력모델은 힌지모델 형태로 구조해석 프로그램에 조인트 요소로 연결한 후, 힌지모델 사용한 간편한 해석기법을 교량 교각에 적용하였다. 휨-축력 상호작용을 고려한 해석결과는 상세한 화이버 요소 해석결과와 비교하였고, 좋은 상관관계를 나타내었다. 또한, 휨-축력-전단 상호작용을 고려한 해석결과는 지진하중을 받는 교각의 변위 요소별 검토가 가능하여 교각의 전체 변위성능 분석에 유용하게 사용할 수 있을 것으로 판단된다.

Behaviour of open beam-to-tubular column angle connections under combined loading conditions

  • Liu, Yanzhi;Malaga-Chuquitaype, Christian;Elghazouli, Ahmed Y.
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.157-185
    • /
    • 2014
  • This paper examines the behaviour of two types of practical open beam-to-tubular column connection details subjected to combined moment, axial and/or shear loads. Detailed continuum finite element models are developed and validated against available experimental results, and extended to deal with flexural, axial and shear load interactions. A numerical investigation is then carried out on the behaviour of selected connections with different stiffness and strength characteristics under various load combination scenarios. The influence of applied levels of axial tensile or compressive loads on the bending stiffness and capacity is examined and discussed. Additionally, the interaction effects between shear forces and co-existing bending and axial loads are examined and shown to be comparatively insignificant in terms of stiffness and capacity in most cases. It is also shown that the range of connections considered in this paper can provide rotational ductility levels in excess of those required under typical design scenarios. Based on these findings, a simplified component-based representation is proposed and described, and its ability to represent the connection response under combined loading is verified using results from detailed numerical simulations.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

Simplified equations for Vierendeel design calculations of composite beams with web openings

  • Panedpojaman, Pattamad
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.401-416
    • /
    • 2018
  • Composite beams with web openings are vulnerable to Vierendeel bending failure. The available methods provide quite conservative estimates of Vierendeel bending resistance. An alternative design method to compute the resistance was proposed in this study, based on quadratic nonlinear interactions of normalized shear force, axial force and Vierendeel bending moment. The interactions of the top and bottom Tee section must satisfy mutual conditions to prevent the Vierendeel failure. The normalized shear force and Vierendeel bending moment of the composite part were used instead in the top Tee interaction. The top Tee axial force was computed based on force equilibrium. Based on a rigid-plastic model, the composite resistance is estimated using an effective slab width of the vertical shear resistance. On using the proposed method, nonlinear reductions due to shear loads and axial forces are not required, in contrast to prior methods. The proposed method was validated against experiments from literature. The method limitations and accuracy as well as the Vierendeel behavior were investigated by finite element simulations, with varied composite beam parameters. The proposed design loads are less conservative than earlier estimates and deviate less from the simulations.

Model verification and assessment of shear-flexure interaction in pile foundations

  • Lemnitzer, Anne;Nunez, Eduardo;Massone, Leonardo M.
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.141-163
    • /
    • 2016
  • Fiber models have been developed and applied to various structural elements such as shear walls, beams and columns. Only scarcely have fiber models been applied to circular foundation systems such as cast in drilled holes shafts (CIDH). In pile foundations with constraint head boundary conditions, shear deformations can easily contribute to the lateral pile response. However, soil structure interaction formulations such as the p-y method, commonly used for lateral pile design, do not include structural shear deformations in its traditional derivation method. A fiber model that couples shear and axial-bending behavior, originally developed for wall elements was modified and validated on circular cross sections (columns) before being applied to a 0.61 m diameter reinforced concrete (RC) pile with fixed head boundary conditions. The analytical response was compared to measured test results of a fixed head test pile to investigate the possible impact of pile shear deformations on the displacement, shear, and moment profiles of the pile. Results showed that shear displacements and forces are not negligible and suggest that nonlinear shear deformations for RC piles should be considered for fixed-head or similar conditions. Appropriate sensor layout is recommended to capture shear deformation when deriving p-y curves from field measurements.

전단이 RC 교각의 지진성능 및 파괴모드에 미치는 영향 (Influence of shear on seismic performance and failure mode of RC piers)

  • 이도형
    • 공학논문집
    • /
    • 제6권1호
    • /
    • pp.53-63
    • /
    • 2004
  • 본 연구에서는 지진하중을 받는 철근콘크리트 교각의 지진성능 및 파괴모드에 전단이 미치는 영향을 조사하였다. 본 연구에서 개발된 전단-축력간의 상호거동 이력응답 모델의 검증을 위하여 철근콘크리트 기둥 실험에 대한 비교해석을 수행하였다. 비교결과, 예측된 해석치는 전단에 관한 하중-변위 이력응답에 있어서 실험결과와 좋은 상관관계를 보여주었다. 아울러, 본 연구에서 개발된 모델을 이용하여 고베 지진에 의해서 손상된 철근콘크리트 교량의 비선형 시간이력 해석을 수행하였다. 교각의 변위응답에 관한 분석결과, 축력의 변화를 고려한 전단의 영향으로 인하여 최대변위가 상당히 증가하였고, 전반적인 교각 강성의 감소와 함께 진동주기의 증가를 유발한다는 것을 알 수 있었다. 따라서 전단과 축력의 영향을 동시에 고려한 응답에 철근콘크리트 교각의 지진손상 평가에 관해서 보다 나은 설명을 제공할 수 있을 것으로 사료된다.

  • PDF

On the seismic response of steel buckling-restrained braced structures including soil-structure interaction

  • Flogeras, Antonios K.;Papagiannopoulos, George A.
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.469-478
    • /
    • 2017
  • This paper summarizes estimated seismic response results from three-dimensional nonlinear inelastic time-history analyses of some steel buckling-restrained braced (BRB) structures taking into account soil-structure interaction (SSI). The response results involve mean values for peak interstorey drift ratios, peak interstorey residual drift ratios and peak floor accelerations. Moreover, mean seismic demands in terms of axial force and rotation in columns, of axial and shear forces and bending moment in BRB beams and of axial displacement in BRBs are also discussed. For comparison purposes, three separate configurations of the BRBs have been considered and the aforementioned seismic response and demands results have been obtained firstly by considering SSI effects and then by neglecting them. It is concluded that SSI, when considered, may lead to larger interstorey and residual interstorey drifts than when not. These drifts did not cause failure of columns and of the BRBs. However, the BRB beam may fail due to flexure.