• 제목/요약/키워드: shear wall-frame systems

검색결과 60건 처리시간 0.022초

A simplified seismic design method for low-rise dual frame-steel plate shear wall structures

  • Bai, Jiulin;Zhang, Jianyuan;Du, Ke;Jin, Shuangshuang
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.447-462
    • /
    • 2020
  • In this paper, a simplified seismic design method for low-rise dual frame-steel plate shear wall (SPSW) structures is proposed in the framework of performance-based seismic design. The dynamic response of a low-rise structure is mainly dominated by the first-mode and the structural system can be simplified to an equivalent single degree-of-freedom (SDOF) oscillator. The dual frame-SPSW structure was decomposed into a frame system and a SPSW system and they were simplified to an equivalent F-SDOF (SDOF for frame) oscillator and an equivalent S-SDOF (SDOF for SPSW) oscillator, respectively. The analytical models of F-SDOF and S-SDOF oscillators were constructed based on the OpenSees platform. The equivalent SDOF oscillator (D-SDOF, dual SDOF) for the frame-SPSW system was developed by combining the F-SDOF and S-SDOF oscillators in parallel. By employing the lateral force resistance coefficients and seismic demands of D-SDOF oscillator, the design approach of SPSW systems was developed. A 7-story frame-SPSW system was adopted to verify the feasibility and demonstrate the design process of the simplified method. The results also show the seismic demands derived by the equivalent dual SDOF oscillator have a good consistence with that by the frame-SPSW structure.

The effect of architectural form on the earthquake behavior of symmetric RC frame systems

  • Inan, Tugba;Korkmaz, Koray;Cagatay, Ismail H.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.271-290
    • /
    • 2014
  • In this study, structural irregularities in plan, which has a considerable effect on earthquake behavior of buildings, have been investigated in detail based on Turkish Earthquake Code 2007. The study consists of six main parametric models and a total of 144 sub-models that are grouped based on RC structural systems such as frame, frame + rigid core, frame with shear wall, and frame with shear wall + rigid core. All models are designed to have both symmetrical plan geometry and regular rigidity distribution. Changes in the earthquake behavior of buildings were evaluated according to the number of storeys, number of axes and the configuration of structural elements. Many findings are obtained and assessed as a result of the analysis for each structural irregularity. The study shows that structural irregularities can be observed in completely symmetric buildings in terms of plan geometry and rigidity distribution.

벽식 건물의 탄성해석에서 벽체의 모델화 방법 검토 (On Modeling of Shear Wall Element in Eastic Analysis of Building Structures with Shear Walls)

  • 전대한
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.180-187
    • /
    • 1998
  • In this paper the attention is focused on the modeling of reinforced concrete(R/C) wall structures to check effectiveness and reliability of elasto-plastic analysis. A relatively simple and reliable wall model is investigated, which is suitable to be efficiently incorporated in a practical pushover analysis of R/C wall structural systems. Two types of analogous frames have been examined to the stress analysis of shear walls. One analogous frame is similar to the widely used wide-column model, the second analogous frame also is called truss model which includes vertical edge column and braces. Further studies are needed to apply to nonlinear seismic analysis of building structure with R/C shear walls.

  • PDF

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Monte Carlo analysis of earthquake resistant R-C 3D shear wall-frame structures

  • Taskin, Beyza;Hasgur, Zeki
    • Structural Engineering and Mechanics
    • /
    • 제22권3호
    • /
    • pp.371-399
    • /
    • 2006
  • The theoretical background and capabilities of the developed program, SAR-CWF, for stochastic analysis of 3D reinforced-concrete shear wall-frame structures subject to seismic excitations is presented. Incremental stiffness and strength properties of system members are modeled by extended Roufaiel-Meyer hysteretic relation for bending while shear deformations for walls by Origin-Oriented hysteretic model. For the critical height of shear-walls, division to sub-elements is performed. Different yield capacities with respect to positive and negative bending, finite extensions of plastic hinges and P-${\delta}$ effects are considered while strength deterioration is controlled by accumulated hysteretic energy. Simulated strong motions are obtained from a Gaussian white-noise filtered through Kanai-Tajimi filter. Dynamic equations of motion for the system are formed according to constitutive and compatibility relations and then inserted into equivalent It$\hat{o}$-Stratonovich stochastic differential equations. A system reduction scheme based on the series expansion of eigen-modes of the undamaged structure is implemented. Time histories of seismic response statistics are obtained by utilizing the computer programs developed for different types of structures.

Safety assessment of dual shear wall-frame structures subject to Mainshock-Aftershock sequence in terms of fragility and vulnerability curves

  • Naderpour, Hosein;Vakili, Khadijeh
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.425-436
    • /
    • 2019
  • Successive ground motions having short time intervals have occurred in many earthquakes so far. It is necessary to investigate the effects of this phenomenon on different types of structures and to take these effects into consideration while designing or retrofitting structures. The effects of seismic sequences on the structures with combined reinforced concrete shear wall and moment resisting frame system have not been investigated in details yet. This paper has tried to analyse the seismic performance of structures with such structural systems subjected to mainshock-aftershock sequences. The effects of the seismic sequences on the investigated models are evaluated by strong measures such as IDA capacity and fragility and vulnerability curves. The results of this study show that the seismic sequences have a significant effect on the investigated models, which necessitates considering this effect on designing, retrofitting, decision making, and taking precautions.

Shaking Table Test and Analysis of Reinforced Concrete Frame with Steel Shear Wall with Circular Opening and Slit Damper

  • Shin, Hye-Min;Lee, Hee-Du;Shin, Kyung-Jae
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1420-1430
    • /
    • 2018
  • Earthquakes of 5.8 and 5.4 Richter scale recently occurred one after another in Korea, changing the Korean peninsula from an earthquake safe zone but 'earthquake danger zone'. Therefore, seismic reinforcements must expand to include structures with low seismic resistance in order to prepare for earthquakes on a larger scale in the future. This study investigated the performances of various seismic reinforcement systems such as X-braced steel rod reinforcement, steel shear wall with circular opening reinforcement, and slit damper reinforcement using shaking table test and computational analyses of seismic data in order to establish a proper seismic reinforcement plan. These three seismic reinforcement systems could increase the stiffness and strength of existing structures and reduce maximum drift ratio in the event of an earthquake.

Experimental study on cyclic behavior of reinforced concrete parallel redundancy walls

  • Lua, Yiqiu;Huang, Liang
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1177-1191
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are one of the most commonly used lateral-load resisting systems in high-rise buildings. RC Parallel redundancy walls studied herein consist of two parts nested to each other. These two parts have different mechanical behaviors and energy dissipation mechanisms. In this paper, experimental studies of four 1/2-scale specimens representing this concept, which are subjected to in-plane cyclic loading, are presented and test results are discussed. Two specimens consist of a wall frame with barbell-shaped walls embedded in it, and the other two consist of a wall frame and braced walls nested each other. The research mainly focuses on the failure mechanism, strength, hysteresis loop, energy dissipation capacity and stiffness of these walls. Results show that the RC parallel redundancy wall is an efficient lateral load resisting component that acts as a "dual" system with good ductility and energy dissipation capacity. One main part absorbs a greater degree of the energy exerted by an earthquake and fails first, whereas the other part can still behave as an independent role in bearing loads after earthquakes.

주상복합구조의 전이보 상세설계기법 연구 (A Study for Transfer Girder Details of the Upper-Wall and Lower-Frame Structures)

  • 이한선;김상연;고동우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.529-534
    • /
    • 2000
  • Hybrid building structure, which comprise both the residential and commercial spaces in a building, are composed of upper shear-walls and lower frames. In these hybrid structures, the structural analysis and design of transfer systems which link upper-wall and lower-frame are crucial. The available structural design methods for the transfer girder are performed by taking a prototype structure, and the details of transfer girder based on these design methods are presented and compared with regard to the dimensions and amount of reinforcements.

  • PDF