• 제목/요약/키워드: shear wall buildings

검색결과 256건 처리시간 0.025초

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

필로티를 갖는 철근콘크리트 전단벽식 건물의 내진성능 (Seismic Performance of Reinforced Concrete Shear Wall Buildings with Piloti)

  • 권영웅;김민수
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.587-594
    • /
    • 2005
  • 최근 판상형 전단벽식 아파트 건물의 고층화와 필로티 설치는 지진발생시 벽량부족현상과 약층 및 연약층을 발생시켜 그 층에서 비탄성 거동이 집중되는 우려가 있다. 본 연구에서는 필로티를 갖는 철근콘크리트 전단벽식 건물에 대하여 FEMA 273과 ATC-40에서 제안하고 있는 성능평가기법을 이용하여 내진성능평가를 실시하고, 그 결과를 비교$\cdot$고찰하였다. 탄성해석을 이용한 내진성능평가 결과, 필로티와 층수에 따라 내진성능지수가 감소되는 것으로 나타났다. 전단벽식 구조물의 경우 강도, 즉 전단응력의 부족 현상이 전체 성능을 지배하고 있었으며, 특히 25층 이상의 경우 그 정도가 더욱 심한 것으로 나타났다. 특히 필로티가 있는 건물에서는 전단응력의 부족과 더불어 약층 및 층 중량 변화가 성능지수의 감소를 초래하고 있어 필로티가 없는 건물에 비하여 성능지수의 감소 경향이 더 크게 나타나는 것을 확인할 수 있었다. 능력스펙트럼을 이용한 비선형정적해석 결과, 층수가 증가하고 필로티가 있는 구조물일수록 성능점이 증가하고 있는 것으로 나타났으며, 평가대상 건물들의 대부분 변형 특성은 인명안전수준에서 허용치를 만족하고 있는 것으로 나타났으나, 25층 이상의 경우 즉시거주 요구수준을 초과하는 것으로 나타났다.

Different macroscopic models for slender and squat reinforced concrete walls subjected to cyclic loads

  • Shin, Jiuk;Kim, JunHee
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.877-890
    • /
    • 2014
  • The purpose of this study is to present adequate modeling solutions for squat and slender RC walls. ASCE41-13 (American Society of Civil Engineers) specifies that the aspect ratios of height to width for the RC walls affect the hysteresis response. Thus, this study performed non-linear analysis subjected to cyclic loading using two different macroscopic models: one of macroscopic models represents flexural failure of RC walls (Shear Wall Element model) and the other (General Wall Element model) reflects diagonal shear failure occurring in the web of RC walls. These analytical results were compared to previous experimental studies for a slender wall (> aspect ratio of 3.0) and a squat wall (= aspect ratio of 1.0). For the slender wall, the difference between the two macroscopic models was negligible, but the squat wall was significantly affected by parameters for shear behavior in the modeling method. For accurate performance evaluation of RC buildings with squat walls, it would be reasonable to use macroscopic models that give consideration to diagonal shear.

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.

Resilient structures in the seismic retrofitting of RC frames: A case study

  • Pallares, Francisco J.;Dominguez, David;Pallares, Luis
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.57-65
    • /
    • 2020
  • It is very important to allocate valuable resources efficiently when reconstructing buildings after earthquake damage. This paper proposes the use of a simple seismic retrofitting system to make buildings more resilient than the stiffer systems such as the shear walls implemented in Chile after the earthquake in 2010. The proposal is based on the use of steel chevron-type braces in RC buildings as a dual system to improve the seismic performance of multistory buildings. A case study was carried out to compare the proposal with the shear wall solution for the typical seismic Chilean RC building from the structural and economic perspectives. The results show that it is more resilient than other stiffer seismic solutions, such as shear walls, reduces the demand, minimizes seismic damage, gives reliable earthquake protection and facilitates future upgrades and repairs while achieving the level of immediate occupancy without the costs of the shear walls system.

무보강 강판 전단벽의 비선형 해석 (A Nonlinear Analysis of Un-stiffened Steel Shear Wall)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제3권2호
    • /
    • pp.47-54
    • /
    • 2003
  • A Steel plate shear wall can be used as one of the lateral force resistant elements in buildings. It have many advantages from a structural point of view such as ductility, energy absorption capacity and initial stiffness etc. In this study to grasp the behavior of steel plate shear wall considering material and geometrical non-linearity, the FEM analyses were carried out using ANSYS(ver. 5.6) program. The analysis results were fully discussed and compared with test results to verify the validity of analysis method. The object of this study is to find out analytically the elasto-plastic behavior of un-stiffened steel plate shear wall.

  • PDF

2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석 (Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake)

  • 엄태성;이승제;박홍근
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.

The effect of architectural form on the earthquake behavior of symmetric RC frame systems

  • Inan, Tugba;Korkmaz, Koray;Cagatay, Ismail H.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.271-290
    • /
    • 2014
  • In this study, structural irregularities in plan, which has a considerable effect on earthquake behavior of buildings, have been investigated in detail based on Turkish Earthquake Code 2007. The study consists of six main parametric models and a total of 144 sub-models that are grouped based on RC structural systems such as frame, frame + rigid core, frame with shear wall, and frame with shear wall + rigid core. All models are designed to have both symmetrical plan geometry and regular rigidity distribution. Changes in the earthquake behavior of buildings were evaluated according to the number of storeys, number of axes and the configuration of structural elements. Many findings are obtained and assessed as a result of the analysis for each structural irregularity. The study shows that structural irregularities can be observed in completely symmetric buildings in terms of plan geometry and rigidity distribution.

The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions

  • Bafti, Farzad Ghaderi;Mortezaei, Alireza;Kheyroddin, Ali
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.651-665
    • /
    • 2019
  • Past earthquakes have shown that appropriately designed and detailed buildings with shear walls have great performance such a way that a considerable portion of inelastic energy dissipation occurs in these structural elements. A plastic hinge is fundamentally an energy diminishing means which decrease seismic input energy through the inelastic deformation. Plastic hinge development in a RC shear wall in the areas which have plastic behavior depends on the ground motions characteristics as well as shear wall details. One of the most generally used forms of structural walls is flanged RC wall. Because of the flanges, these types of shear walls have large in-plane and out-of-plane stiffness and develop high shear stresses. Hence, the purpose of this paper is to evaluate the main characteristics of these structural components and provide a more comprehensive expression of plastic hinge length in the application of performance-based seismic design method and promote the development of seismic design codes for shear walls. In this regard, the effects of axial load level, wall height, wall web and flange length, as well as various features of earthquakes, are examined numerically by finite element methods and the outcomes are compared with consistent experimental data. Based on the results, a new expression is developed which can be utilized to determine the length of plastic hinge area in the flanged RC shear walls.

단부 횡보강이 없는 세장한 전단벽의 내진성능 (Earthquake-Resistance of Slender Shear Wall with No Boundary Confinement)

  • 박홍근;강수민;조봉호;홍성걸
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.47-57
    • /
    • 2000
  • Experimental and numerical studies were done to investigate seismic performance of slender shear walls with no boundary confinement that are principal structural members of high0rise bearing wall buildings. 1/3 scale specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were tested to investigate strength, ductility, capacity of energy dissipation, and strain distribution, The experimental results show that the slender shear walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, much less than 0.004 being commonly used for estimation of ductility. This result indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from the neutral axis to the extreme compressive fiber.